Laser Physics

, Volume 21, Issue 1, pp 130–136

Brownian diffusion of gold nanoparticles in an optical trap studied by fluorescence correlation spectroscopy

  • J. Wang
  • Z. Li
  • C. P. Yao
  • F. Xue
  • Z. X. Zhang
  • G. Hüttmann
Laser Spectroscopy

Abstract

The effect of thermal-induced Brownian motion on gold nanoparticles (Au NPs) in optical traps is studied by fluorescence correlation spectroscopy (FCS) method. The Brownian motion and optical trapping potential are investigated by the decay time of the FCS curve and the laser power. It is shown that that the probability of finding a gold nanoparticle in the trap depends on the ratio of the optical energy of the particle to its thermal energy. A power threshold is observed by the decay time as a function of laser power. The experimental studies show that the temperature rise does not seriously affect the average number of particles in the focal spot, but the average residence time is more sensitively affected by the temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).CrossRefGoogle Scholar
  2. 2.
    V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 1, 516 (2004).CrossRefADSGoogle Scholar
  3. 3.
    C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, J. Biomed. Opt. 10, 064012 (2005).CrossRefADSGoogle Scholar
  4. 4.
    V. K. Pustovalov, Laser Phys. Lett. 2, 401 (2005).CrossRefADSGoogle Scholar
  5. 5.
    C. Yao, X. Qu, Z. Zhang, G. Hüttmann, and R. Rahmanzadeh, J. Biomed. Opt. 14, 054034 (2009).CrossRefADSGoogle Scholar
  6. 6.
    A. Lemelle, B. Veksler, I. S. Kozhevnikov, G. G. Akchurin, S. A. Piletsky, and I. Meglinski, Laser Phys. Lett. 6, 71 (2009).CrossRefADSGoogle Scholar
  7. 7.
    X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, J. Biomed. Opt. 13, 031217 (2008).CrossRefADSGoogle Scholar
  8. 8.
    S. Tanev, V. V. Tuchin, and P. Paddon, Laser Phys. Lett. 3, 594 (2006).CrossRefADSGoogle Scholar
  9. 9.
    V. K. Pustovalov and V. A. Babenko, Laser Phys. Lett. 2, 84 (2005).CrossRefADSGoogle Scholar
  10. 10.
    P. M. Hansen, V. K. Bhatia, N. Harrit, and I. Oddershede, Nano Lett. 5, 1937 (2005).CrossRefADSGoogle Scholar
  11. 11.
    K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer, Opt. Express 15, 12017 (2007).CrossRefADSGoogle Scholar
  12. 12.
    T. Iida and H. Ishihara, Phys. Rev. Lett. 90, 057403 (2003).CrossRefADSGoogle Scholar
  13. 13.
    S. Ito, N. Toitani, H. Yamauchi, and H. Miyasaka, Phys. Rev. E 81, 061402 (2010).CrossRefADSGoogle Scholar
  14. 14.
    D. Magde, E. L. Elson, and W. W. Webb, Phys. Rev. Lett. 29, 705 (1972).CrossRefADSGoogle Scholar
  15. 15.
    D. Magde, E. L. Elson, and W. W. Webb, Biopolymers 13, 29 (1974).CrossRefGoogle Scholar
  16. 16.
    C. Hosokawa, H. Yoshikawa, and H. Masuhara, Phys. Rev. E 72, 021408 (2005).CrossRefADSGoogle Scholar
  17. 17.
    M. Wahl, I. Gregor, M. Patting, and J. Enderlein, Opt. Express 11, 3583 (2003).CrossRefADSGoogle Scholar
  18. 18.
    A. Benda, M. Hof, M. Wahl, M. Patting, R. Erdmann, and P. Kapusta, Rev. Sci. Instrum. 76, 003106 (2005).CrossRefGoogle Scholar
  19. 19.
    P. Kapusta, M. Wahl, A. Benda, M. Hof, and J. Enderlein, J. Fluoresc. 17, 43 (2007).CrossRefGoogle Scholar
  20. 20.
    S. T. Hess, S. Huang, A. A. Heikal, and W. W. Webb, Biochem. 41, 697 (2002).CrossRefGoogle Scholar
  21. 21.
    C. Hosokawa, H. Yoshikawa, and H. Masuhara, Jpn. J. Appl. Phys. 45, 453 (2006).CrossRefADSGoogle Scholar
  22. 22.
    J. A. Dix, E. F. Y. Hom, and A. S. Verkman, J. Phys. Chem. B 110, 1896 (2006).CrossRefGoogle Scholar
  23. 23.
    T. Wocjan, J. Krieger, O. Krichevsky, and J. Langowski, Phys. Chem. Chem. Phys. 11, 10671 (2009).CrossRefGoogle Scholar
  24. 24.
    T. J. Davis, Opt. Express 15, 2702 (2007).CrossRefADSGoogle Scholar
  25. 25.
    C. D. Geddes, A. Parfenov, I. Gryczynski, and J. R. Lakowicz, Chem. Phys. Lett. 380, 269 (2003).CrossRefADSGoogle Scholar
  26. 26.
    V. K. Pustovalov, A. S. Smetannikov, and V. P. Zharov, Laser Phys. Lett. 5, 775 (2008).CrossRefADSGoogle Scholar
  27. 27.
    E. Y. Lukianova-Hleb and D. O. Lapotko, Nano Lett. 9, 2160 (2009).CrossRefADSGoogle Scholar
  28. 28.
    Y. Seal, A. E. Carpenter, and T. T. Perkins, Opt. Lett. 31, 2429 (2006).CrossRefADSGoogle Scholar
  29. 29.
    A. Vogel, J. Noack, G. Hüttmann, and G. Paltauf, Appl. Phys. B 81, 1015 (2005).CrossRefADSGoogle Scholar
  30. 30.
    A. V. Kabashin, Laser Phys. 19, 1136 (2009).CrossRefADSGoogle Scholar
  31. 31.
    P. Pavlova, E. Borisova, L. Avramov, El. Petkova, and P. Troyanova, Laser Phys. 20, 596 (2010).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • J. Wang
    • 1
  • Z. Li
    • 1
  • C. P. Yao
    • 1
  • F. Xue
    • 1
  • Z. X. Zhang
    • 1
  • G. Hüttmann
    • 2
  1. 1.The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Lifescience and TechnologyXi’an Jiaotong University710049China
  2. 2.Institut für Biomedizinische OptikUniversität zu LübeckLübeckGermany

Personalised recommendations