Advertisement

Laser Physics

, Volume 21, Issue 1, pp 245–249 | Cite as

Selective photoinactivation of C. albicans and C. dubliniensis with hypericin

  • C. Bernal
  • J. A. O. Rodrigues
  • A. P. P. Guimarães
  • A. O. Ribeiro
  • K. T. de Oliveira
  • H. Imasato
  • J. R. Perussi
Laser Methods in Chemistry, Biology, and Medicine

Abstract

The genus Candida includes different species that have the potential to invade and colonize the human body and C. albicans is the most common cause of skin, nail and mucous infections. The increasing resistance against antifungal drugs has renewed the search for new treatment procedures and antimicrobial photodynamic inactivation (PDI) is a propitious candidate. Hypericin (HY) has several wanted properties to be used as a photosensitizer in this technique including a high quantum yield of singlet oxygen generation, a high extinction coefficient near 600 nm, and a relatively low dark toxicity. Although the phototoxicity of HY on several tumor cells has been reported, the data concerning its photoactivity on microorganisms are scarce. The aim of this study was to obtain the experimental parameters to achieve an acceptable selective hypericinphotoinactivation of two species of Candida comparing with fibroblasts and epithelial cells which are the constituents of some potential host tissues, such mucosas, skin and cavities. Microorganisms and cells were incubated with the same HY concentrations and short incubation time followed by irradiation with equal dose of light. The best conditions to kill just Candida were very low HY concentration (0.1–0.4 μg ml−1) incubated by 10 min and irradiated with LED 590 nm with 6 J cm−2.

Keywords

Candida Laser Phys Laser Physics Emodin Hypericin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. G. Lambrechts, M. C. G. Aalders, and J. van Marle, Antimicrob. Agents Chemother. 49, 2026 (2005).CrossRefGoogle Scholar
  2. 2.
    Y. Y. Tian, L. L. Wang, and W. Wang, Laser Phys. 18, 1119 (2008).CrossRefADSGoogle Scholar
  3. 3.
    G. Monfrecola, E. M. Procaccini, M. Bevilacqua, A. Manco, G. Calabro, and P. Santoianni, Photochem. Photobiol. Sci. 4, 419 (2004).CrossRefGoogle Scholar
  4. 4.
    Z. Lukšiene and P. De Witte, Act. Med. Lituan. 9, 195 (2002).Google Scholar
  5. 5.
    K. T. de Oliveira, F. F. de Assis, A. O. Ribeiro, C. R. Neri, A. U. Fernandes, M. S. Baptista, N. P. Lopes, O. A. Serra, and Y. Iamamoto, J. Org. Chem. 74, 7962 (2009).CrossRefGoogle Scholar
  6. 6.
    K. T. de Oliveira, A. M. S. Silva, A. C. Tomé, M.G.P.M. S. Neves, C. R. Neri, V. S. Garcia, O. A. Serra, Y. Iamamoto, and J. A. S. Cavaleiro, Tetrahedron 64, 8709 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Liu, P. Chen, F. Zhang, L. Lin, G.-Q. Tang, and G.-G. Mu, Laser Phys. Lett. 6, 465 (2009).CrossRefADSGoogle Scholar
  8. 8.
    Y. Tan, C. S. Xu, X. S. Xia, H. P. Yu, D. Q. Bai, Y. He, and A. W. N. Leung, Laser Phys. Lett. 6, 321 (2009).CrossRefADSGoogle Scholar
  9. 9.
    Z. Diwu, Photochem. Photobiol. 61, 529 (1995).CrossRefGoogle Scholar
  10. 10.
    A. R. Bilia, S. Gallori, and F. F. Vincieri, Life Sci. 70, 3077 (2002).CrossRefGoogle Scholar
  11. 11.
    C. S. Xu and A. W. N. Leung, Laser Phys. Lett. 7, 68 (2010).CrossRefADSGoogle Scholar
  12. 12.
    H. Falk, J. Meyer, and M. Oberreiter, Monatsh Chem. 124, 339 (1993).CrossRefGoogle Scholar
  13. 13.
    A. Bernd, S. Simon, A. R. Bosca, S. Kippenberger, J. D. Alperi, J. Miquel, J. F. Villalba, D. Garcia, M. P. Mira, and R. Kaufmann, Photochem. Photobiol. 69, 218 (1999).CrossRefGoogle Scholar
  14. 14.
    A. Colasanti, A. Kisslinger, R. Liuzzi, M. Quarto, P. Riccio, G. Roberti, D. Tramontano, and F. Villani, J. Photochem. Photobiol. B 54, 103 (2000).CrossRefGoogle Scholar
  15. 15.
    M. Blank, G. Kostenich, G. Lavie, S. Kimelb, Y. Keisari, and A. Orenstein, Photochem. Photobiol. 76, 335 (2002).CrossRefGoogle Scholar
  16. 16.
    M. Van de Putte, T. Roskams, J. R. Vandenheede, P. Agostinis, and P. A. de Witte, Br. J. Cancer 92, 1406 (2005).CrossRefGoogle Scholar
  17. 17.
    V. Stupakova, L. Varinska, A. Mirossay, M. Sarissky, J. Mojzis, R. Dankovcik, P. Urdzik, A. Ostro, and L. Mirossay, Phytother. Res. 23, 827 (2009).CrossRefGoogle Scholar
  18. 18.
    N. Durán and P. S. Song, Photochem. Photobiol. 43, 677 (1986).CrossRefGoogle Scholar
  19. 19.
    A. Kamuhabwa, P. Agostinis, B. Ahmed, W. Landuyt, B. van Cleynenbreugel, H. van Poppel, and P. de Witte, Photochem. Photobiol. Sci. 3, 772 (2004).CrossRefGoogle Scholar
  20. 20.
    A. Kubin, F. Wierrani, U. Burner, G. Alth, and W. Grünberger, Curr. Pharm. Des. 11, 233 (2005).CrossRefGoogle Scholar
  21. 21.
    T. Kiesslich, B. Krammer, and K. Plaetzer, Curr. Med. Chem. 13, 2189 (2006).CrossRefGoogle Scholar
  22. 22.
    A. Jankowski, S. Jankowski, A. Mirończyk, and J. Niedbach, Pol. J. Microbiol. 54, 323 (2005).Google Scholar
  23. 23.
    M. Luthia, E. B. Gyengeb, M. Engstruma, M. Bredellb, K. Gratzb, H. Waltb, R. Gmurc, and C. Maake, Medic. Laser Appl. 24, 227 (2009).CrossRefGoogle Scholar
  24. 24.
    V. Engelhardt, B. Krammer, and K. Plaetzer, Photochem. Photobiol. Sci. 3, 365 (2010).CrossRefGoogle Scholar
  25. 25.
    M. Soncin, C. Fabris, A. Busetti, D. Dei, D. Nistri, G. Roncucci, and G. Jori, Photochem. Photobiol. Sci. 1, 815 (2002).CrossRefGoogle Scholar
  26. 26.
    A. Huygens, A. R. Kamuhabwaand, and P. A. M. de Witte, Eur. J. Pharm. Biopharm. 59, 461 (2005).CrossRefGoogle Scholar
  27. 27.
    A. P. J. Maestrin, A. O. Ribeiro, A. C. Tedesco, A. C. Tome, C. R. Neri, F. S. Vinhado, J. A. S. Cavaleiro, M. G. P. M. S. Neves, O. A. Serra, and P. R. J. Martins, J. Braz. Chem. Soc. 15, 923 (2004).CrossRefGoogle Scholar
  28. 28.
    R. A. Prates, E. G. da Silva, A. M. Yamada, L C. Suzuki, C. R. Paula, and M. S. Ribeiro, Laser Phys. 19, 1038 (2009).CrossRefADSGoogle Scholar
  29. 29.
    P. F. C. Menezes, V. S. Bagnato, R. M. Johnke, C. Bonnerup, C. H. Sibata, R. R. Allison, and J. R. Perussi, Laser Phys. Lett. 4, 546 (2007).CrossRefADSGoogle Scholar
  30. 30.
    F. Denizot and R. Lang, J. Immunol. Meth. 89, 271 (1986).CrossRefGoogle Scholar
  31. 31.
    C. Etzlstorfer, H. Falk, N. Müller, W. Schmitzberger, and U. G. Wagner, Monatsh Chem. 124, 751 (1993).CrossRefGoogle Scholar
  32. 32.
    M. C. Milanetto, H. Imasato, and J. R. Perussi, Laser Phys. Lett. 6, 611 (2009).CrossRefADSGoogle Scholar
  33. 33.
    R. S. Cavalcante, H. Imasato, V. S. Bagnato, and J. R. Perussi, Laser Phys. Lett. 6, 64 (2009).CrossRefADSGoogle Scholar
  34. 34.
    C. Bernal, results not published.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • C. Bernal
    • 1
  • J. A. O. Rodrigues
    • 1
  • A. P. P. Guimarães
    • 1
  • A. O. Ribeiro
    • 2
  • K. T. de Oliveira
    • 3
  • H. Imasato
    • 1
  • J. R. Perussi
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão Carlos-SPBrazil
  2. 2.Centro Ciências Naturais e HumanasUniversidade Federal do ABCSanto André-SPBrazil
  3. 3.Departamento de QuímicaUniversidade Federal de São CarlosSão Carlos-SPBrazil

Personalised recommendations