Laser Physics

, Volume 21, Issue 1, pp 1–24 | Cite as

Coherence properties of thermally stimulated fields of solids

Reviews

Abstract

Various definitions of spatial and temporal correlative properties of spontaneous steady-state classical and quantum processes are considered and the key properties of the processes are described. A relation of correlative properties of thermally stimulated fields with the frequency dependence of the dielectric function is demonstrated. A dependence of the correlative properties of the thermally stimulated fields in the near-field regime on the distance from a solid surface is presented. It is demonstrated that the characteristic spatial and temporal scales of the evanescent part of the thermally stimulated field are unambiguously determined by the specific properties of the dispersion relation of surface polaritons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Rytov, Theory of Electrical Fluctuations and Thermal Radiation (AN SSSR, Moscow, 1953) [in Russian].Google Scholar
  2. 2.
    S. M. Rytov, Introduction to Statistical Radiophysics, Part I (Nauka, Moscow, 1966) [in Russian].Google Scholar
  3. 3.
    S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics, Part II (Nauka, Moscow, 1978) [in Russian].Google Scholar
  4. 4.
    M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].Google Scholar
  5. 5.
    R. Carminati and J.-J. Greffet, Phys. Rev. Lett. 8, 1660 (1999).CrossRefADSGoogle Scholar
  6. 6.
    C. Henkel, K. Joulain, R. Carminati, and J.-J. Greffet, Opt. Commun. 186, 57 (2000).CrossRefADSGoogle Scholar
  7. 7.
    K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, Surf. Sci. Rep. 57, 59 (2005).CrossRefADSGoogle Scholar
  8. 8.
    T. Setälä, M. Kaivola, and A. T. Friberg Phys. Rev. Lett. 88, 123902–1 (2002).CrossRefADSGoogle Scholar
  9. 9.
    E. A. Vinogradov and I. A. Dorofeev, Phys. Usp. 52, 449 (2009).Google Scholar
  10. 10.
    E. Wolf, Proc. R. Soc. A 230, 246 (1955)CrossRefADSGoogle Scholar
  11. 11.
    E. Wolf, Proc. Phys. Soc. 71, 257 (1958)CrossRefADSMATHGoogle Scholar
  12. 12.
    C. L. Mehta and E. Wolf, “Correlation Theory of Quantized Electromagnetic Fields. I. Dynamical Equations and Conservation Laws,” Phys. Rev. 157, 1183–1187 (1967).CrossRefADSGoogle Scholar
  13. 13.
    R. J. Glauber, “The Quantum Theory of Optical Coherence,” Phys. Rev. 130, 2529–2539 (1963)CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    C. L. Mehta and E. Wolf, “Coherence Properties of Black Body Radiation. I. Correlation Tensors of the Classical Field,” Phys. Rev. A 134, 1143–1149 (1964).CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    C. L. Mehta and E. Wolf, “Coherence Properties of Black Body Radiation. II. Correlation Tensors of the Quantized Field,” Phys. Rev. A 134, 1149–1153 (1964).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    E. Wolf and L. Mandel’, “Coherence Properties of Optical Fields. I,” Usp. Fiz. Nauk 87, 491–520 (1965).Google Scholar
  17. 17.
    E. Wolf and L. Mandel’, “Coherence Properties of Optical Fields. II,” Usp. Fiz. Nauk 88, 347–366 (1966).Google Scholar
  18. 18.
    J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics (Benjamin, New York, 1968; Mir, Moscow, 1970).Google Scholar
  19. 19.
    D. N. Klyshko, Physical Principles of Quantum Electronics (Nauka, Moscow, 1986) [in Russian].Google Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).Google Scholar
  21. 21.
    W. B. Davenport, Jr. and W. L. Root, Introduction to Random Signals and Noise (McGraw-Hill, New York, 1958; Inostrannaya Literatura, Moscow, 1960).MATHGoogle Scholar
  22. 22.
    G. S. Agarwal, “Quantum Electrodynamics in the Presence of Dielectrics and Conductors. I. Electromagnetic-Field Response Functions and Black-Body Fluctuations in Finite Geometries”, Phys. Rev. A 11, 230–242 (1975).CrossRefADSGoogle Scholar
  23. 23.
    V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1979) [in Russian].Google Scholar
  24. 24.
    V. V. Batygin and I. N. Toptygin, Problems in Electrodynamics (Nauka, Moscow, 1970; Academic, London, 1978).Google Scholar
  25. 25.
    W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Clarendon Press, Oxford, 1954; Gos. Izd-vo Tekh.-Teor. Lit., Moscow, 1940).MATHGoogle Scholar
  26. 26.
    C. K. Carniglia and L. Mandel, “Quantization of Evanescent Electromagnetic Waves,” Phys. Rev. D 3, 280–296 (1971).CrossRefADSGoogle Scholar
  27. 27.
    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed. (Clarendon, Oxford, 1948; Gos. Izd. Tekh.-Teor. Lit., Moscow, 1948).Google Scholar
  28. 28.
    N. N. Bogolyubov and S. V. Tyablikov, “Retarded and Advanced Green Functions in Statistical Physics,” Dokl. Akad. Nauk SSSR 126, 53–56 (1959) [Sov. Phys. Dokl. 4, 589 (1959)].Google Scholar
  29. 29.
    D. Zubarev, “Double-Time Green Functions in Statistical Physics,” Usp. Fiz. Nauk 71, 71–116 (1960) [Sov. Phys. Usp. 3, 320 (1960)].MathSciNetGoogle Scholar
  30. 30.
    R. Kubo, “Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems,” J. Phys. Soc. Jpn. 12, 570–586 (1957).CrossRefMathSciNetADSGoogle Scholar
  31. 31.
    V. L. Bonch-Bruevich and S. V. Tyablikov, The Green Function Method in Statistical Mechanics (Fizmatgiz, Moscow, 1961; North-Holland, Amsterdam, 1962).Google Scholar
  32. 32.
    M. F. Sarry, “Analytical Methods of Calculating Correlation Functions in Quantum Statistical Physics,” Usp. Fiz. Nauk 161, 49–92 (1991).CrossRefGoogle Scholar
  33. 33.
    N. N. Bogolyubov and O. S. Parasyuk, “On Analytical Continuation of Generalized Functions,” Dokl. Akad. Nauk SSSR 109, 717 (1956).MATHMathSciNetGoogle Scholar
  34. 34.
    V. M. Agranovich and V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Nauka, Moscow, 1965; Springer, Berlin, 1984).Google Scholar
  35. 35.
    E. A. Vinogradov, Phys. Rep. 217, 159 (1992).MATHCrossRefADSGoogle Scholar
  36. 36.
    E. A. Vinogradov, Usp. Fiz. Nauk 172, 347, 1371 (2002) [Phys. Usp. 45, 325, 1213 (2002)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhni NovgorodRussia
  2. 2.Institute of SpectroscopyRussian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations