Laser Physics

, Volume 21, Issue 1, pp 25–43

Fullerenes: The attractive medium for harmonic generation

Reviews

Abstract

We review the results of systematic experimental studies of high-order harmonic generation (HHG) in C60-rich laser-produced plasma under different plasma conditions and laser parameters. The morphology of fullerene clusters before and after ablation is analyzed to define the optimal conditions of excitation of C60-containing targets. The enhancement of HHG efficiency in C60-rich plasmas by using the two-color pump technique is discussed. The conversion efficiency for the odd and even harmonics in the vicinity of surface plasmon resonance of the C60-containing plasma (40–70 nm) was estimated to be in the range of 10−4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Shim, G. Hays, R. Zgadzaj, T. Ditmire, and M. C. Downer, Phys. Rev. Lett. 98, 123902 (2007).CrossRefADSGoogle Scholar
  2. 2.
    S. V. Popruzhenko, D. F. Zaretsky, and D. Bauer, Laser Phys. Lett. 5, 631 (2008).CrossRefADSGoogle Scholar
  3. 3.
    T. D. Donnely, T. Ditmire, K. Neuman, M. D. Pery, and R. W. Falcone, Phys. Rev. Lett. 76, 2472 (1996).CrossRefADSGoogle Scholar
  4. 4.
    R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, J. Phys. B: At. Mol. Opt. Phys. 41, 045603 (2008).CrossRefADSGoogle Scholar
  5. 5.
    R. A. Ganeev, Laser Phys. 18, 1009 (2008).CrossRefADSGoogle Scholar
  6. 6.
    R. A. Ganeev, L. B. Elouga Bom, J. Abdul-Hadi, M.C.H. Wong, J. P. Brichta, V. R. Bhardwaj, and T. Ozaki, Phys. Rev. Lett. 102, 013903 (2009).CrossRefADSGoogle Scholar
  7. 7.
    I. V. Hertel, H. Steger, J. de Vries, B. Weisser, C. Men- zel, B. Kamke, and W. Kamke, Phys. Rev. Lett. 68, 784 (1992).CrossRefADSGoogle Scholar
  8. 8.
    S. W. J. Scully et al., Phys. Rev. Lett. 94, 065503 (2005).CrossRefADSGoogle Scholar
  9. 9.
    V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 91, 203004 (2003).CrossRefADSGoogle Scholar
  10. 10.
    V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Phys. Rev. Lett. 93, 043001 (2004).CrossRefADSGoogle Scholar
  11. 11.
    A. Jarón-Becker, A. Becker, and F. H. M. Faisal, Phys. Rev. Lett. 96, 143006 (2006).CrossRefADSGoogle Scholar
  12. 12.
    M. V. Amossov, N. B. Delone, and V. P. Krainov, Sov. Phys. JETP 64, 1191 (1986).Google Scholar
  13. 13.
    A. Jaron-Becker and A. Becker, Laser Phys. 19, 1705 (2009).CrossRefADSGoogle Scholar
  14. 14.
    N. Gotsche, H. Ulbricht, and M. Arndt, Laser Phys. 17, 583 (2007).CrossRefADSGoogle Scholar
  15. 15.
    H. Hoshi, T. Manaka, K. Ishikawa, and H. Takezoe, Jpn. J. Appl. Phys. 36, 6403 (1997).CrossRefADSGoogle Scholar
  16. 16.
    D. Neher, G. I. Stegeman, F. A. Tinker, and N. Peyghambarian, Opt. Lett. 17, 1491 (1992).CrossRefADSGoogle Scholar
  17. 17.
    Z. H. Kafafi, J. R. Lindle, R. G. S. Pong, F. J. Bartoii, L. J. Linggs, and J. Milliken, Chem. Phys. Lett. 188, 492 (1992).CrossRefADSGoogle Scholar
  18. 18.
    R. A. Ganeev, L. B. Elouga Bom, M. C. H. Wong, J.-P. Brichta, V. R. Bhardwaj, P. V. Redkin, and T. Ozaki, Phys. Rev. A 80, 043808 (2009).CrossRefADSGoogle Scholar
  19. 19.
    R. A. Ganeev, H. Singhal, P. A. Naik, J. A. Chakera, A. K. Srivastava, T. S. Dhami, M. P. Joshi, and P. D. Gupta, J. Appl. Phys. 106, 103103 (2009).CrossRefADSGoogle Scholar
  20. 20.
    L. B. Elouga Bom, J.-C. Kieffer, R. A. Ganeev, M. Su- zuki, H. Kuroda, and T. Ozaki, Phys. Rev. A 75, 033804 (2007).CrossRefADSGoogle Scholar
  21. 21.
    C. Wülker, W. Theobald, D. Ouw, F. P. Schäfer, and B. N. Chichkow, Opt. Commun. 112, 21 (1994).CrossRefADSGoogle Scholar
  22. 22.
    I. Shchatsinin, T. Laarmann, N. Zhavoronkov, C. P. Schulz, and I. V. Hertel, J. Chem. Phys. 129, 204308 (2008).CrossRefADSGoogle Scholar
  23. 23.
    R. A. Ganeev, H. Singhal, P. A. Naik, V. Arora, U. Chakravarty, J. A. Chakera, R. A. Khan, I. A. Kulagin, P. V. Redkin, M. Raghuramaiah, and P. D. Gupta, Phys. Rev. A 74, 063824 (2006).CrossRefADSGoogle Scholar
  24. 24.
    R. A. Ganeev, J. Phys. B: At. Mol. Opt. Phys. 40, R213 (2007).CrossRefADSGoogle Scholar
  25. 25.
    D. Charalambidis, P. Tzallas, E. P. Benis, E. Skantzakis, G. Maravelias, L. A. A. Nikolopoulos, A. P. Conde, and G. D. Tsakiris, New J. Phys. 10, 025018 (2008).CrossRefADSGoogle Scholar
  26. 26.
    X.-S. Liu and N.-N. Li, J. Phys. B: At. Mol. Opt. Phys. 41, 015602 (2008).CrossRefADSGoogle Scholar
  27. 27.
    R. A. Ganeev, H. Singhal, P. A. Naik, I. A. Kulagin, P. V. Redkin, J. A. Chakera, M. Tayyab, R. A. Khan, and P. D. Gupta, Phys. Rev. A 80, 033845 (2009).CrossRefADSGoogle Scholar
  28. 28.
    R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, J. Opt. Soc. Am. B 25, 325 (2008).CrossRefADSGoogle Scholar
  29. 29.
    R. A. Ganeev, U. Chakravarty, P. A. Naik, H. Srivastava, C. Mukherjee, M. K. Tiwari, R. V. Nandedkar, and P. D. Gupta, Appl. Opt. 46, 1205 (2007).CrossRefADSGoogle Scholar
  30. 30.
    W. Zhu, D. E. Miser, W. G. Chan, and M. R. Hajaligol, Carbon 42, 1463 (2004).CrossRefGoogle Scholar
  31. 31.
    M. F. Ciappina, A. Becker, and A. Jarón-Becker, Phys. Rev. A 76, 063406 (2007).CrossRefADSGoogle Scholar
  32. 32.
    D. Cricchio, P. P. Corso, E. Fiordilino, G. Orlando, and F. Persico, J. Phys. B: At. Mol. Opt. Phys. 42, 085404 (2009).CrossRefADSGoogle Scholar
  33. 33.
    G. P. Zhang, Phys. Rev. Lett. 95, 047401 (2005).CrossRefADSGoogle Scholar
  34. 34.
    E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. L. Blanc, F. Salin, and P. Agostini, Phys. Rev. Lett. 82, 1668 (1999).CrossRefADSGoogle Scholar
  35. 35.
    D. L. Windt, W. C. Cash, Jr., M. Scott, P. Arendt, B. Newnam, R. F. Fisher, A. B. Swartzlander, P. Z. Takacs, and J. M. Pinneo, Appl. Opt. 27, 281 (1988).ADSGoogle Scholar
  36. 36.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).CrossRefADSGoogle Scholar
  37. 37.
    T. Mori, J. Kou, Y. Haruyama, Y. Kubozono, and K. Mitsuke, J. Electron Spectrosc. Relat. Phenom. 144, 243 (2005).CrossRefGoogle Scholar
  38. 38.
    E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).CrossRefADSGoogle Scholar
  39. 39.
    M. A. L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Comp. Phys. Comm. 151, 60 (2003).CrossRefADSGoogle Scholar
  40. 40.
    N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).CrossRefADSGoogle Scholar
  41. 41.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).CrossRefADSGoogle Scholar
  42. 42.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).CrossRefGoogle Scholar
  43. 43.
    A. V. Nemukhin, B. L. Grigorenko, and A. A. Granovsky, Moscow Univ. Chem. Bull. 45, 75 (2004).Google Scholar
  44. 44.
    J. Zanghellini, Ch. Jungreuthmayer, and T. Brabec, J. Phys. B 39, 709 (2006).CrossRefADSGoogle Scholar
  45. 45.
    M. Ruggenthaler, S. V. Popruzhenko, and D. Bauer, Phys. Rev. A 78, 033413 (2008).CrossRefADSGoogle Scholar
  46. 46.
    D. Cricchio, P. P. Corso, E. Fiordilino, G. Orlando, and F. Persico, J. Phys. B: At. Mol. Opt. Phys. 42, 085404 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of ElectronicsUzbekistan Academy of SciencesTashkentUzbekistan

Personalised recommendations