Laser Physics

, Volume 20, Issue 6, pp 1288–1294 | Cite as

1444-nm Q-switched pulse generator based on Nd:YAG/V:YAG microchip laser

  • J. Šulc
  • J. Novák
  • H. Jelínková
  • K. Nejezchleb
  • V. Škoda
Solid State and Liquid Lasers


Q-switched microchip laser emitting radiation at eye-safe wavelength 1444 nm was designed and realized. This laser was based on composite crystal which consists of 4 mm long Nd:YAG active medium diffusion bonded with 1 mm long V:YAG saturable absorber. The diameter of the composite crystal was 5 mm. The initial transmission of the V:YAG part was T 0 = 94% @ 1440 nm. The microchip resonator consists of dielectric mirrors, directly deposited onto the composite crystal surfaces. These mirrors were specially designed to ensure desired emission at 1444 nm and to prevent parasitic lasing at other Nd3+ transmissions. The output coupler with reflectivity 94% for the generated wavelength 1444 nm was placed on the V3+-doped part. The laser was operating under pulsed pumping for the duty-cycle up to 50%. With increasing value of mean pumping power a strong decrease of generated pulse length was observed. The shortest generated pulses were 4.2 ns long (FWHM). Stable pulses with energy 34 μJ were generated with repetition rate up to 1.5 kHz. Corresponding pulse peak power was 8.2 kW. The wavelength of linearly polarized TEM00 laser mode was fixed to 1444 nm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Koechner, Solid State Laser Engeneering (Springer, Berlin, 1999).Google Scholar
  2. 2.
    Y. Inoue and S. Fujikawa, IEEE J. Quantum Electron 36, 751 (2000).CrossRefADSGoogle Scholar
  3. 3.
    Y. Chen and Y. Lan, Appl. Phys. B: Lasers Opt. 79, 29 (2004).CrossRefADSGoogle Scholar
  4. 4.
    H. Kang, H. Zhang, P. Yan, D. Wang, and M. Gong, Laser Phys. Lett. 5, 879 (2008).CrossRefGoogle Scholar
  5. 5.
    C. Zhang, X. Zhang, Q. Wang, Z. Cong, S. Fan, X. Chen, Z. Liu, and Z. Zhang, Laser Phys. Lett. 6, 521 (2009).CrossRefGoogle Scholar
  6. 6.
    B. Zhang, X. Dong, J. He, H. Huang, K. Yang, C. Zuo, J. Xu, and S. Zhao, Laser Phys. Lett. 5, 869 (2008).CrossRefGoogle Scholar
  7. 7.
    X. Chen, X. Zhang, Q. Wang, P. Li, S. Li, Z. Cong, Z. Liu, S. Fan, and H. Zhang, Laser Phys. Lett. 6, 363 (2009).CrossRefGoogle Scholar
  8. 8.
    C. Zhang, X. Zhang, Q. Wang, S. Fan, X. Chen, Z. Cong, Z. Liu, Z. Zhang, H. Zhang, and F. Su, Laser Phys. Lett. 6, 505 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Bai, Y. Li, Z. Shen, D. Song, Z. Ren, and J. Bai, Laser Phys. Lett. 6, 791 (2009).CrossRefGoogle Scholar
  10. 10.
    J. B. Marling, IEEE J. Quantum Electron. 14, 56 (1978).CrossRefADSGoogle Scholar
  11. 11.
    R. Moncorgé, B. Chambon, J. Rivoire, N. Gamier, E. Descroix, P. Laporte, H. Guillet, S. Roy, J. Mareschal, D. Pelenc, J. Doury, and P. Farge, Opt. Mater. 8, 109 (1997).CrossRefGoogle Scholar
  12. 12.
    R. C. Powell, Physics of Solid-State Laser Materials (Springer, New York, 1998).Google Scholar
  13. 13.
    H. M. Kretschmann, F. Heine, V. G. Ostroumov, and G. Huber, Opt. Lett. 22, 466 (1997).CrossRefADSGoogle Scholar
  14. 14.
    H. Jelínková, J. Pašta, J. Šulc, M. Némec, and P. Koranda, Laser Phys. Lett. 2, 603 (2005).CrossRefGoogle Scholar
  15. 15.
    R. J. Lanzafame and J. Nairn, J. Clin. Laser Med. Surg. 15, 23 (1997).Google Scholar
  16. 16.
    I. V. Klimov, I. A. Shcherbakov, and V. B. Tsvetkov, in ALT’98 Selected Papers on Novel Laser Methods in Medicine and Biology, Ed. by A. M. Prokhorov, V. I. Pustovoy, and G. P. Kuz’min, Proc. SPIE, Vol. 3829, pp. 165–179 (1999).Google Scholar
  17. 17.
    R. S. Cummings, J. A. Prodoehl, A. L. Rhodes, J. D. Black, and H. H. Sherk, in Lasers in Orthopedic. Dental and Veterinary Medicine II, Ed. by D. Gal, S. J. O’Brien, C. T. Vangsness, J. M. White, and H. A. Wigdor, Proc. SPIE, Vol. 1880, pp. 34–36 (1993).Google Scholar
  18. 18.
    E. E. Rebeiz, Z. Wang, M. M. Pankratov, D. F. Perrault, and S. M. Shapshay, in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems V, Ed. by R. R. Anderson, Proc. SPIE, Vol. 2395, pp. 208–214 (1995).Google Scholar
  19. 19.
    R. Martiniuk, J. A. Bauer, J. D. McKean, J. Tulip, and B. W. Mielke, J. Neurosurg. 70, 249 (1989).CrossRefGoogle Scholar
  20. 20.
    J. Šulc, P. Arátor, H. Jelínková, K. Nejezchleb, and V. Škoda, in Solid State Lasers XVI: Technology and Devices, H. J. Hoffman, R. K. Shori, and N. Hodgson, Proc. SPIE, Vol. 6451, p. 64511 (2007).Google Scholar
  21. 21.
    J. Šulc, H. Jelínková, K. Nejezchleb, and V. Škoda, Laser Phys. Lett. 2, 519 (2005).CrossRefGoogle Scholar
  22. 22.
    V. P. Mikhailov, N. I. Zhavoronkov, N. V. Kuleshov, V. A. Saudulenko, K. V. Yumashev, and P. V. Prokoshin, in Advanced Solid-State Lasers, Ed. by A. A. Pinto and T. Y. Fan, OSA Proc., Vol. 15, pp. 354–358 (Opt. Soc. Am., Washington, DC, 1993).Google Scholar
  23. 23.
    A. Agnesi, A. Guandalini, G. Reali, J. K. Jabczyński, K. Kopczyński, and Z. Mierczyk, Opt. Commun. 194, 429 (2001).CrossRefADSGoogle Scholar
  24. 24.
    A. S. Grabtchikov, A. N. Kuzmin, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, K. V. Yumashev, N. V. Kuleshov, H. J. Eichler, and M. B. Danailov, Opt. Mater. 16, 349 (2001).CrossRefADSGoogle Scholar
  25. 25.
    J. K. Jabczyński, K. Kopczyński, Z. Mierczyk, A. Agnesi, A. Guandalini, and G. Reali, Opt. Eng. 40, 2802 (2001).CrossRefADSGoogle Scholar
  26. 26.
    H. Jelínková, P. Černy, J. Šulc, J. K. Jabczyński, K. Kopczyński, W. Zendzian, Z. Mierczyk, and M. Miyagi, Opt. Eng. 41, 1976 (2002).CrossRefADSGoogle Scholar
  27. 27.
    J. Ma, Y. Li, Y. Sun, and X. Hou, Laser Phys. 18, 393 (2008).CrossRefADSGoogle Scholar
  28. 28.
    H.-T. Huang, B.-T. Zhang, J.-L. He, J.-F. Yang, J.-L. Xu, X.-Q. Yang, and S. Zhao, Laser Phys. Lett. 6, 775 (2009).CrossRefGoogle Scholar
  29. 29.
    F. Jia, Laser Phys. Lett. 6, 850 (2009).CrossRefGoogle Scholar
  30. 30.
    R. Wu, J. D. Myers, M. J. Myers, B. I. Denker, B. I. Galagan, S. E. Sverchkov, J. A. Hutchinson, and W. Trussel, in Solid State Lasers IX: Technology and Devices, Ed. by R. Scheps, Proc. SPIE, Vol. 3929, pp. 42–45 (2000).Google Scholar
  31. 31.
    A. A. Kaminskii, Laser Crystals. Their Physics and Properties, Springer Ser. Opt. Sci., No. 14 (Springer, Berlin, 1981).Google Scholar
  32. 32.
    N. N. Il’ichev, A. V. Kir’yanov, P. P. Pashinin, V. A. Sandulenko, A. V. Sandulenkol, and S. M. Shpuga, Quantum Electron. 25, 1154 (1995).CrossRefADSGoogle Scholar
  33. 33.
    J. Šulc, H. Jelínková, K. Nejezchleb, and V. Škoda, in CLEO/Europe-EQEC 2009, Advance Programme on CD (Munich, Germany, 2009). CLEO.Google Scholar
  34. 34.
    B. Henderson and R. H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge Studies in Modern Optics (Cambridge Univ., Cambridge (2000).CrossRefGoogle Scholar
  35. 35.
    D. J. Segelstein, The Complex Refractive Index of Water, Master’s Thesis (Univ. Missouri, Kansas City, 1981).Google Scholar
  36. 36.
    S. D. Lord, “A New Software Tool for Computing Earth’s Atmospheric Transmission of Near- and Far-Infrared Radiation,” NASA Technical Memorandum 103957 (NASA, 1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • J. Šulc
    • 1
  • J. Novák
    • 1
  • H. Jelínková
    • 1
  • K. Nejezchleb
    • 2
  • V. Škoda
    • 2
  1. 1.Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePrague 1Czech Republic
  2. 2.Crytur, Ltd. TurnovTurnovCzech Republic

Personalised recommendations