Advertisement

Laser Physics

, Volume 20, Issue 5, pp 1156–1162 | Cite as

Resonant amplification of quantum fluctuations in a spinor gas

  • O. TopicEmail author
  • M. Scherer
  • G. Gebreyesus
  • T. Henninger
  • P. Hyllus
  • C. Klempt
  • W. Ertmer
  • L. Santos
  • J. J. Arlt
Physics of Cold Trapped Atoms

Abstract

Bose-Einstein condensates of atoms with non-zero spin are known to constitute an ideal system to investigate fundamental properties of magnetic superfluids. More recently it was realized that they also provide the fascinating opportunity to investigate the macroscopic amplification of quantum and classical fluctuations. This is strikingly manifested in a sample initially prepared in the m F = 0 state, where spin-changing collisions triggered by quantum fluctuations may lead to the creation of correlated pairs in m F = ±1. We show that the pair creation efficiency is strongly influenced by the interplay between the external trapping potential and the Zeeman effect. It thus reflects the confinement-induced magnetic field dependence of elementary spin excitations of the condensate. Remarkably, pair production in our experiments is therefore characterized by a multi-resonant dependence on the magnetic field. Pair creation at these resonances acts as strong parametric matter-wave amplifier. Depending on the resonance condition, this amplification can be extremely sensitive or insensitive to the presence of seed atoms. We show that pair creation at a resonance which is insensitive to the presence of seed atoms is triggered purely by quantum fluctuations and thus the system acts as a matter-wave amplifier for the vacuum state.

Keywords

Spin Dynamic Magnetic Field Dependence Quantum Fluctuation Pair Creation Spin Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Wails and G. Milburn, Quantum Optics (Springer, Berlin, 2007).Google Scholar
  2. 2.
    A. P. Mills, Nucl. Instrum. Methods Phys. Res. B 192, 107 (2002).CrossRefADSGoogle Scholar
  3. 3.
    L. Kofman, A. Linde, and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994).CrossRefADSGoogle Scholar
  4. 4.
    T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998).CrossRefADSGoogle Scholar
  5. 5.
    J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, and W. Ketterle, Nature 396, 345 (1998).CrossRefADSGoogle Scholar
  6. 6.
    H. Schmaljohann, M. Erhard, J. Kronjager, M. Kottke, S. van Staa, L. Cacciapuoti, J. J. Arlt, K. Bongs, and K. Sengstock, Phys. Rev. Lett. 92, 040402 (2004).CrossRefADSGoogle Scholar
  7. 7.
    L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore, and D. M. Stamper-Kurn, Nature 443, 312 (2006).CrossRefADSGoogle Scholar
  8. 8.
    A. Lamacraft, Phys. Rev. Lett. 98, 160404 (2007).CrossRefADSGoogle Scholar
  9. 9.
    S. R. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Cohen, and D. M. Stamper-Kurn, arXiv:0806.1553 (2008).Google Scholar
  10. 10.
    T. Kuwamoto, K. Araki, T. Eno, and T. Hirano, Phys. Rev. A 69, 063604 (2004).CrossRefADSGoogle Scholar
  11. 11.
    M.-S. Chang, Q. Qin, W. Zhang, L. You, and M. S. Chapman, Nature Phys. 1, 111 (2005).CrossRefADSGoogle Scholar
  12. 12.
    J. Kronjäger, C. Becker, M. Brinkmann, R. Walser, P. Navez, K. Bongs, and K. Sengstock, Phys. Rev. A 72, 063619 (2005).CrossRefADSGoogle Scholar
  13. 13.
    W. Zhang, D. L. Zhou, M.-S. Chang, M. S, Chapman, and L. You, Phys. Rev. Lett. 95, 180403 (2005).CrossRefADSGoogle Scholar
  14. 14.
    J. Kronjäger, C. Becker, P. Navez, K. Bongs, and K. Sengstock, Phys. Rev. Lett. 97, 110404 (2006).CrossRefADSGoogle Scholar
  15. 15.
    A. T. Black, E. Gomez, L. D. Turner, S. Jung, and P. D. Lett, Phys. Rev. Lett. 99, 070403 (2007).CrossRefADSGoogle Scholar
  16. 16.
    M. Vengalattore, S. R. Leslie, J. Guzman, and D. M. Stamper-Kurn, Phys. Rev. Lett. 100, 170403 (2008).CrossRefADSGoogle Scholar
  17. 17.
    R. W. Cherng, V. Gritsev, D. M. Stamper-Kurn, and E. Dernier, Phys. Rev. Lett. 100, 180404 (2008).CrossRefADSGoogle Scholar
  18. 18.
    R. W. Cherng and E. Demler, arXiv:0806.1991vl (2008).Google Scholar
  19. 19.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).zbMATHCrossRefADSGoogle Scholar
  20. 20.
    H. Pu and P. Meystre, Phys. Rev. Lett. 85, 3987 (2000).CrossRefADSGoogle Scholar
  21. 21.
    C. Klempt, O. Topic, G. Gebreyesus, M. Scherer, T. Henninger, P. Hyllus, W. Ertmer, L. Santos, and J. Arlt, Phys. Rev. Lett. 103, 195302 (2009).CrossRefADSGoogle Scholar
  22. 22.
    C. Klempt, O. Topic, G. Gebreyesus, M. Scherer, T. Henninger, P. Hyllus, W. Ertmer, L. Santos, and J. J. Arlt, arXiv:0907.3413 (2009).Google Scholar
  23. 23.
    C. Klempt, T. Henninger, O. Topic, J. Will, S. Faike, W. Ertmer, and J. Arlt, Eur. Phys. J. D 48, 121 (2008).CrossRefADSGoogle Scholar
  24. 24.
    T. Esslinger, I. Bloch, and T. W. Hänsen, Phys. Rev. A 58, R2664 (1998).CrossRefADSGoogle Scholar
  25. 25.
    S. Tojo, T. Hayashi, T. Tanabe, T. Hirano, Y. Kawaguchi, H. Saito, and M. Ueda, Phys. Rev. A: At. Mol. Opt. Phys. 80, 042704 (2009).ADSGoogle Scholar
  26. 26.
    L.-M. Duan, A. Sørensen, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 85, 3991 (2000).CrossRefADSGoogle Scholar
  27. 27.
    T. Swislocki, M. Brewczyk, M. Gajda, and K. Rzazewski, arXiv:0901.1763 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • O. Topic
    • 1
    Email author
  • M. Scherer
    • 1
  • G. Gebreyesus
    • 2
  • T. Henninger
    • 1
  • P. Hyllus
    • 3
  • C. Klempt
    • 1
  • W. Ertmer
    • 1
  • L. Santos
    • 2
  • J. J. Arlt
    • 4
  1. 1.Institut für QuantenoptikLeibniz Universität HannoverHannoverGermany
  2. 2.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany
  3. 3.BEC-INFM, Dipartimento di FisicaUniversità di TrentoPovoItaly
  4. 4.QUANTOP, Danish National Research Foundation Centre for Quantum Optics, Department of Physics and AstronomyUniversity of ArhusArhus C.Denmark

Personalised recommendations