Laser Physics

, Volume 20, Issue 5, pp 1215–1220 | Cite as

Dynamical entanglement as a signature of chaos in the semiclassical limit

  • M. Lombardi
  • A. MatzkinEmail author
Quantum Information Science


The relationship between classically chaotic dynamics and the entanglement properties of the corresponding quantum system is examined in the semiclassical limit. Numerical results are computed for a modified kicked top, keeping the classical dynamics constant while investigating the entanglement for several versions of the corresponding quantum system characterized by a different value of the effective Planck constant eff. Our findings indicate that as eff → 0, the apparent signatures of classical chaos in the entanglement properties, such as characteristic oscillations in the time-dependence of the linear entropy, can also be obtained in the regular regime. These results suggest that entanglement is not a universal marker of chaotic dynamics of the corresponding classical system.


Angular Momentum Laser Physics Chaotic Dynamic Semiclassical Limit Classical Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981).zbMATHGoogle Scholar
  2. 2.
    M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1990).zbMATHGoogle Scholar
  3. 3.
    M. Brack and R. Bhaduri, Semiclassical Physics (Addison-Wesley, Reading, MA, 1997).Google Scholar
  4. 4.
    F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2004).Google Scholar
  5. 5.
    P. A. Miller and S. Sarkar, Phys. Rev. E 60, 1542 (1999).CrossRefADSGoogle Scholar
  6. 6.
    A. Lakshminarayan, Phys. Rev. E 64, 036207 (2001).CrossRefADSGoogle Scholar
  7. 7.
    A. Lahiri and S. Nag, Phys. Lett. A 318, 6 (2003).zbMATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    H. Fujisaki, Phys. Rev. A 70, 012313 (2004).CrossRefADSGoogle Scholar
  9. 9.
    R. Demkowicz-Dobrzanski and M. Kus, Phys. Rev. E 70, 066216 (2004).CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    M. Lombardi and A. Matzkin, Europhys. Lett. 74, 771 (2006).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    M. Lombardi and A. Matzkin, Phys. Rev. A 73, 062335 (2006).CrossRefADSGoogle Scholar
  12. 12.
    S. Zhang and Q. Jie, Phys. Rev. A 77, 012312 (2008).CrossRefADSGoogle Scholar
  13. 13.
    X. Wang, S. Ghose, B. C. Sanders, and B. Hu, Phys. Rev. E 70, 016217 (2004).CrossRefADSGoogle Scholar
  14. 14.
    C. M. Trail, V. Madhok, and I. H. Deutsch, Phys. Rev. E 78, 046211 (2008).CrossRefADSGoogle Scholar
  15. 15.
    M. Lombardi, P. Labastie, M. C. Bordas, and M. Broyer, J. Chem. Phys. 89, 3479 (1988).CrossRefADSGoogle Scholar
  16. 16.
    A. Matzkin, J. Phys. A 39, 10859 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Laboratoire de Spectrométrie physique (CNRS Unité 5588)Université Joseph-Fourier Grenoble-1Saint-Martin d’HèresFrance
  2. 2.Labaratoire de Physique théorique et Modélisation (CNRS Unité 8089)Université de Cergy-Pontoise, Site de Saint MartinCergy-Pontoise cedexFrance

Personalised recommendations