Laser Physics

, Volume 20, Issue 5, pp 1197–1202 | Cite as

Multi-pass classical vs. quantum strategies in lossy phase estimation

  • R. Demkowicz-Dobrzański
Quantum Information Science


The use of classical multiple-pass approach for phase estimation which mimics the behavior of the N00N states, is compared with quantum techniques. It is shown that in the presence of losses its performance is significantly worse than the one of the optimal quantum strategy.


Fisher Information Phase Estimation Multiple Pass Quantum Strategy Quantum Fisher Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Hariharan, Optical Interferometry (Elsevier, Amsterdam, 2003).Google Scholar
  2. 2.
    V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).CrossRefADSGoogle Scholar
  3. 3.
    C. M. Caves, Phys. Rev. D 23, 1693 (1981).CrossRefADSGoogle Scholar
  4. 4.
    P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Phys. Rev. Lett. 56, 2153 (1987).CrossRefADSGoogle Scholar
  5. 5.
    M. Xiao, L.-A. Wu, and H. J. Kimble, Phys. Rev. Lett. 59, 278 (1987).CrossRefADSGoogle Scholar
  6. 6.
    M. J. Holland and K. Burnett, Phys. Rev. Lett. 71, 1355 (1993).CrossRefADSGoogle Scholar
  7. 7.
    B. C. Sanders, S. D. Bartlett, T. Rudolph, and P. L. Knight, Phys. Rev A 68, 042329 (2003).CrossRefADSGoogle Scholar
  8. 8.
    J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996).CrossRefADSGoogle Scholar
  9. 9.
    J. P. Dowilng, Phys. Rev. A 57, 4736 (1998).CrossRefADSGoogle Scholar
  10. 10.
    S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett. 79, 3865 (1997).CrossRefADSGoogle Scholar
  11. 11.
    A. Shaji and C. M. Caves, Phys. Rev. A 76, 032111 (2007).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    M. Sarovar and G. J. Milburn, J. Phys. A: Math. Gen. 39, 8487 (2006).zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    M. A. Rubin and S. Kaushik, Phys. Rev. A 75, 053805 (2007).CrossRefADSGoogle Scholar
  14. 14.
    G. Gilbert, M. Hamrick, and Y. S. Weinstein, J. Opt. Soc. Am. B 25, 1336 (2008).CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    S. D. Huver, C. F. Wildfeuer, and J. P. Dowiing, (2008).Google Scholar
  16. 16.
    U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Phys. Rev. Lett. 102, 040403 (2009).CrossRefADSGoogle Scholar
  17. 17.
    R. Demkowicz-Dobrzanski, U. Dorner, B. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, Phys. Rev. A 80, 013825 (2009).CrossRefADSGoogle Scholar
  18. 18.
    M. Kacprowicz, R. Demkowicz-Dobrzanski, W. Wasilewski, and K. Banaszek, arXiv:0906.3511 (2009).Google Scholar
  19. 19.
    B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).CrossRefADSGoogle Scholar
  20. 20.
    B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G. J. Pryde, New J. Phys. 11, 073023 (2009).CrossRefADSGoogle Scholar
  21. 21.
    M. de Burgh and S. D. Bartlett, Phys. Rev. A 72, 042301 (2005).CrossRefADSGoogle Scholar
  22. 22.
    S. Boixo, C. M. Caves, A. Datta, and A. Shaji, Laser Phys. 16, 1525 (2006).CrossRefADSGoogle Scholar
  23. 23.
    C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, New York, 1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of PhysicsNicolaus Copernicus UniversityToruńPoland
  2. 2.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations