Advertisement

Laser Physics

, Volume 20, Issue 5, pp 1079–1084 | Cite as

Highly efficient cryogenically-cooled Yb:YAG laser

  • J. Kawanaka
  • Y. Takeuchi
  • A. Yoshida
  • S. J. Pearce
  • R. Yasuhara
  • T. Kawashima
  • H. Kan
Physics of Lasers

Abstract

A MOPA laser system for high pulse energy and high average power has been developed by using a cryogenic Yb:YAG. In the regenerative amplifier with our original TRAM architecture, the high pulse energies of 6.5 and 1.5 mJ were obtained at the repetition rate of 200 Hz and 1 kHz, respectively. An optical efficiency was as high as ηo-o = 9.3% with an excellent beam quality of M 2 < 1.1, which ensured that a cryogenic Yb:YAG TRAM had a high thermal strength. The following four pass power amplifier with a cryogenic Yb:YAG rod showed 140 mJ at 100 Hz. Both a high optical efficiency of ηo-o = 30% and a high slope efficiency of ηs = 44% showed that an efficient laser operation could be realized for a power amplification with both a high pulse energy and a high average power by using a cryogenic Yb:YAG.

Keywords

Pulse Energy Amplify Spontaneous Emission Master Oscillator Power Amplifier High Pulse Energy Small Signal Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Trushin, K. Kosma, W. Fus, and W. E. Schmid, Opt. Lett. 32, 2432 (2007).CrossRefADSGoogle Scholar
  2. 2.
    D. Hermann, L. Veisz, R. Tautz, R. Tautz, F. Tavella, K. Schmid, V. Pervak, and F. Krausz, Opt. Lett. 34, 2459 (2009).CrossRefADSGoogle Scholar
  3. 3.
    A. Bayramian, J. Armstrong, G. Beer, R. Campbell, B. Chai, R. Cross, A. Erlandson, Y. Fei, B. Freitas, R. Kent, J. Menapace, W. Molander, K. Schaffers, C. Siders, S. Sutton, J. Tassano, S. Telford, C. Ebbers, J. Caird, and C. Barty, JOSA B 25, 57 (2008).CrossRefADSGoogle Scholar
  4. 4.
    R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, Opt. Lett. 33, 1711 (2008).CrossRefADSGoogle Scholar
  5. 5.
    S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, Appl. Phys. B 80, 635 (2005).CrossRefADSGoogle Scholar
  6. 6.
    R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, J. Appl. Phys. 98, 103514 (2005).CrossRefADSGoogle Scholar
  7. 7.
    J. Kawanaka, S. Tokita, H. Nishioka, M. Fujita, K. Yamakawa, K. Ueda, and Y. Izawa, Laser Phys. 15, 1306 (2005).Google Scholar
  8. 8.
    A. Giesen and J. Speiser, IEEE J. Sel. Top. Quantum Electron. 13, 598 (2007).CrossRefGoogle Scholar
  9. 9.
    H. Furuse, J. Kawanaka, K. Takeshita, N. Miyanaga, T. Saiki, K. Imasaki, M. Fujita, and S. Ishii, Opt. Lett. 34, 3439 (2009).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • J. Kawanaka
    • 1
  • Y. Takeuchi
    • 1
  • A. Yoshida
    • 1
  • S. J. Pearce
    • 1
  • R. Yasuhara
    • 1
    • 2
  • T. Kawashima
    • 1
    • 2
  • H. Kan
    • 1
    • 2
  1. 1.Institute of Laser EngineeringOsaka UniversityOsakaJapan
  2. 2.Central Research LaboratoryHamamatsu Photonics K. K.ShizuokaJapan

Personalised recommendations