Laser Physics

, Volume 20, Issue 5, pp 1085–1090 | Cite as

Passive mode-locking of acentric Yb-doped borate crystals

  • V. Petrov
  • X. Mateos
  • A. Schmidt
  • S. Rivier
  • U. Griebner
  • H. Zhang
  • J. Wang
  • J. Li
  • J. Liu
Physics of Lasers

Abstract

Passive mode locking of the self-frequency doubling Yb:YAB and Yb:YCOB crystals with a saturable absorber mirror is studied at the fundamental wavelength with diode pumping. All essential polarization orientations including the self-frequency doubling configuration are considered. For the first time sub-90 fs pulses at the fundamental are obtained with both materials and the improvement in terms of pulse length in comparison to previous work is about 2.3 times (Yb:YAB) and 2.8 times (Yb:YCOB). The Yb:YAB laser generates pulses as short as 87 fs at 1050 nm with a 0.4% output coupler. The shortest pulses (76 fs) are obtained with a Y-cut Yb:YCOB for EZ. With an output coupler of 0.4% the oscillation wavelength is 1056 nm. For EX the mode-locked Yb:YCOB laser operates on a different Stark transition (at longer wavelengths) than for Egg and EZ.

Keywords

Laser Physics Output Coupler Average Output Power Incident Pump Power Autocorrelation Trace 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Lederer, M. Hildebrandt, V. Z. Kolev, B. Luther-Davis, B. Taylor, J. Dawes, P. Dekker, J. Piper, H. H. Tan, and C. Jagadish, Opt. Lett. 27, 436 (2002).CrossRefADSGoogle Scholar
  2. 2.
    S. Rivier, A. Schmidt, C. Kränkel, R. Peters, K. Petermann, G. Huber, M. Zorn, M. Weyers, A. Klehr, G. Erbert, V. Petrov, and U. Griebner, Opt. Exp. 15, 15539 (2007).CrossRefADSGoogle Scholar
  3. 3.
    G. J. Valentine, A. J. Kemp, D. J. L. Birkin, D. Burns, F. Balembois, P. Georges, H. Bernas, A. Aron, G. Aka, W. Sibbett, A. Brun, M. D. Dawson, and E. Bente, Electron. Lett. 36, 1621 (2000).CrossRefGoogle Scholar
  4. 4.
    F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, A. Aron, F. Mougel, G. Aka, and D. Vivien, Opt. Lett. 25, 423 (2000).CrossRefADSGoogle Scholar
  5. 5.
    F. Druon, S. Chenais, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, F. Zavelani-Rossi, A. Auge, J. P. Chambaret, A. Aron, F. Mougel, G. Aka, and D. Vivien, Opt. Mat. 19, 73 (2002).CrossRefGoogle Scholar
  6. 6.
    F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaume, G. Aka, B. Viana, S. Mohr, and D. Kopf, Opt. Lett. 27, 197 (2002).CrossRefADSGoogle Scholar
  7. 7.
    F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaume, G. Aka, B. Viana, D. Vivien, J. P. Chambaret, S. Mohr, and D. Kopf, Appl. Phys. B 74, S201 (2002).CrossRefADSGoogle Scholar
  8. 8.
    M. Delaigue, V. Jubera, J. Sablayrolles, J.-P. Chaminade, A. Garcia, and I. Manek-Hönninger, Appl. Phys. B 87, 693 (2007).CrossRefADSGoogle Scholar
  9. 9.
    U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, and J. aus der Au, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).CrossRefGoogle Scholar
  10. 10.
    D. Rytz, A. Gross, S. Vernay, and V. Wesemann, Proc. SPIE 6998, 699814 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Wang, J. M. Dawes, P. Dekker, D. S. Knowles, J. A. Piper, and B. Lu, J. Opt. Soc. Am. B 16, 63 (1999).CrossRefADSGoogle Scholar
  12. 12.
    S. T. Durmanov, O. V. Kuzmin, G. M. Kuzmicheva, S. A. Kutovoi, A. A. Martynov, E. K. Nesynov, V. L. Panyutin, Yu. P. Rudnitsky, G. V. Smirnov, V. L. Hait, and V. I. Chizhikov, Opt. Mat. 18, 243 (2001).CrossRefGoogle Scholar
  13. 13.
    P. Dekker, J. M. Dawes, J. A. Piper, Y. Liu, and J. Wang, Opt. Commun. 195, 431 (2001).CrossRefADSGoogle Scholar
  14. 14.
    P. Dekker, J. M. Dawes, and J. A. Piper, J. Opt. Soc. Am. B 22, 378 (2005).CrossRefADSGoogle Scholar
  15. 15.
    J. L. Blows, P. Dekker, P. Wang, J. M. Dawes, and T. Omatsu, Appl. Phys. B 76, 289 (2003).CrossRefADSGoogle Scholar
  16. 16.
    J. Liu, X. Mateos, H. Zhang, J. Li, J. Wang, and V. Petrov, IEEE J. Quantum Electron. 43, 385 (2007).CrossRefADSGoogle Scholar
  17. 17.
    J. Liu, V. Petrov, H. Zhang, J. Li, and J. Wang, IEEE J. Quantum Electron. 44, 283 (2008).CrossRefADSGoogle Scholar
  18. 18.
    J. M. Dawes, P. Dekker, P. Burns, and J. A. Piper, Opt. Rev. 12, 101 (2005).CrossRefGoogle Scholar
  19. 19.
    W. K. Jang, Q. Ye, D. Hammons, J. Eichenholz, J. Lim, M. Richardson, B. H. T. Chai, and E. W. Van Stryland, IEEE J. Quantum Electron. 35, 1826 (1999).CrossRefADSGoogle Scholar
  20. 20.
    C. Kränkel, R. Peters, K. Petermann, P. Loiseau, G. Aka, and G. Huber, J. Opt. Soc. Am. B 26, 1310 (2009).CrossRefADSGoogle Scholar
  21. 21.
    H. Zhang, X. Meng, P. Wang, L. Zhu, X. Liu, R. Cheng, J. Dawes, P. Dekker, S. Zhang, and L. Sun, Appl. Phys. B 68, 1147 (1999).CrossRefADSGoogle Scholar
  22. 22.
    L. Shah, Q. Ye, J. M. Eichenholz, D. A. Hammons, M. Richardson, B. H. T. Chai, and R. E. Peale, Opt. Commun. 167, 149 (1999).CrossRefADSGoogle Scholar
  23. 23.
    J. Liu, H. Zhang, J. Wang, and V. Petrov, Opt. Lett. 32, 2909 (2007).CrossRefADSGoogle Scholar
  24. 24.
    J. Liu, W. Han, H. Zhang, J. Wang, and V. Petrov, Appl. Phys. B 91, 329 (2008).CrossRefADSGoogle Scholar
  25. 25.
    A. Aron, G. Aka, B. Viana, A. Kahn-Harari, D. Vivien, F. Druon, F. Balembois, P. Georges, A. Brun, N. Lenain, and M. Jacquet, Opt. Mater. 16, 181 (2001).CrossRefADSGoogle Scholar
  26. 26.
    J. E. Hellström, V. Pasiskevicius, F. Laurell, B. Denker, B. Galagan, L. Ivleva, S. Sverchkov, I. Voronina, and V. Horvath, Laser Phys. 17, 1204 (2007).CrossRefADSGoogle Scholar
  27. 27.
    J. Li, J. Wang, X. Cheng, X. Hu, P. A. Burns, and J. M. Dawes, J. Cryst. Growth 250, 458 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. Petrov
    • 1
  • X. Mateos
    • 1
    • 2
  • A. Schmidt
    • 1
  • S. Rivier
    • 1
  • U. Griebner
    • 1
  • H. Zhang
    • 3
  • J. Wang
    • 3
  • J. Li
    • 3
  • J. Liu
    • 4
  1. 1.Max-Born-Institute for Nonlinear Optics and Ultrafast SpectroscopyBerlinGermany
  2. 2.Fisica i Cristallografia de Materials (FiCMA)Universitat Rovira i Virgili (URV)TarragonaSpain
  3. 3.State Key Laboratory of Crystal MaterialsShandong UniversityJinanChina
  4. 4.College of PhysicsQingdao UniversityQingdaoChina

Personalised recommendations