Laser Physics

, Volume 20, Issue 4, pp 811–815 | Cite as

Systematic study on the confinement structure design of 1.5-μm InGaAlAs/InP multiple-quantum-well lasers

Semiconductor Lasers

Abstract

An in-dept analysis on the separate confinement heterostructure (SCH) design parameters of 1.5-μm InGaAlAs/InP multiple quantum-well (MQW) lasers is reported. Theoretical calculations show a drastic enhancement on threshold current and slope efficiency from step-index SCH (STEP-SCH) to graded-index SCH (GRIN-SCH) design, but the effect ceases beyond a critical number of grading steps. This finding implies ease of the growth process and reduction in cost. The overall GRIN-SCH’s thickness is found to exert great influence over the achievable laser’s threshold current and slope efficiency. An average of 27 mA threshold current reduction and more than 32% of slope efficiency increment were achieved by optimizing the GRIN-SCH thickness. Increasing the grading energy range of the GRIN-SCH decreases the slope efficiency, but is found to effectively reduce carrier leakage at elevated temperature leading to a less temperature-sensitive threshold current MQW ridge lasers were fabricated and characterized out of two laser materials, one with a reference STEP-SCH and another with a proposed optimized GRIN-SCH profile. The laser with optimised SCH design has shown a 36% reduction in room temperature threshold current as compared to that with the STEP-SCH design, which is in good agreement to the theoretical simulation. In addition, a record high characteristic temperature (T0) of 105 K was obtained on the GRIN-SCH laser structure, which is more than three fold increment as compared to the STEP-SCH design.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hirayama, Y. Miyake, and M. Asada, IEEE J. Quantum Electron. 28, 68 (1992).CrossRefADSGoogle Scholar
  2. 2.
    J. Feldmann, G. Peter, E. O. Göbel, K. Leo, H.-J. Polland, K. Ploog, K. Fujiwara, and T. Nakayama, Appl. Phys. Lett. 51, 226 (1987).CrossRefADSGoogle Scholar
  3. 3.
    S. Morin, B. Deveaud, F. Clerot, K. Fujiwara, and K. Mitsunaga, IEEE J. Quantum Electron. 27, 1669 (1991).CrossRefADSGoogle Scholar
  4. 4.
    S. D. Hersee, B. de Cremoux, and J. P. Duchemin, Appl. Phys. Lett. 44, 476 (1984).CrossRefADSGoogle Scholar
  5. 5.
    H. Hirayama, J. Yoshida, Y. Miyake, and M. Asada, Appl. Phys. Lett. 61, 2398 (1992).CrossRefADSGoogle Scholar
  6. 6.
    W. X. Zou, Z. M. Chuang, K. K. Law, N. Dagli, L. A. Coldren, and J. L. Merz, J. Appl. Phys. 69, 2857 (1991).CrossRefADSGoogle Scholar
  7. 7.
    J. Nagle, S. Hersee, M. Krakowski, T. Weil, and C. Weisbuch, Appl. Phys. Lett. 49, 1325 (1986).CrossRefADSGoogle Scholar
  8. 8.
    Z.-M. Li, K. M. Dzurko, A. Delage, and S. P. McAlister, IEEE J. Quantum Electron. 28, 792 (1992).CrossRefADSGoogle Scholar
  9. 9.
    PICS3D User’s Manual 2008 http://www.crosslight.com.
  10. 10.
    J. Minch, S. H. Park, T. Keating, and S. L. Chuang, IEEE J. Quantum Electron. 35, 771 (1999).CrossRefADSGoogle Scholar
  11. 11.
    G. Liu and S. L. Chuang, IEEE J. Quantum Electron. 37, 1283 (2001).CrossRefADSGoogle Scholar
  12. 12.
    Y. S. Yong, H. Y. Wong, H. K. Yow, and M. Sorel, Appl. Phys. B (2009, in press).Google Scholar
  13. 13.
    J. Piprek, J. K. White, and A. J. SpringThorpe, IEEE J. Quantum Electron. 38, 1253 (2002).CrossRefADSGoogle Scholar
  14. 14.
    J. Pankove, IEEE J. Quantum Electron. 4, 119 (1968).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Bernussi, H. Temkin, D. L. Coblentz, and R. A. Logan, Appl. Phys. Lett. 66, 67 (1995).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Y. S. Yong
    • 1
  • H. Y. Wong
    • 1
  • H. K. Yow
    • 1
  • M. Sorel
    • 2
  1. 1.Center of Advanced Devices and Systems, Faculty of EngineeringMultimedia UniversityCyberjayaMalaysia
  2. 2.Optoelectronics Research Group, Department of Electronics and Electrical EngineeringUniversity of GlasgowGlasgowUK

Personalised recommendations