Laser Physics

, Volume 20, Issue 4, pp 865–870 | Cite as

Optical parameters and upconversion fluorescence in Tm3+/Yb3+ codoped tellurite glass

  • Q. J. Huang
  • Q. P. Wang
  • J. Chang
  • X. Y. Zhang
  • Z. J. Liu
  • G. Y. Yu
Novel Laser Materials

Abstract

Tm3+/Yb3+ codoped tellurite glass has been prepared. Density, refractive index, optical absorption, Judd-Ofelt parameters and spontaneous transition probabilities of Tm3+ have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and S-band (1470 nm) fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Judd-Ofelt parameters, strong blue three-photon upcoversion emission of Tm3+ in glass indicate that Tm3+/Yb3+ codoped tellurite glass is a promising blue color upconversion optical and laser material. In addition, experiment results showed the 980 nm laser was more efficient than 808 nm laser when pumping Tm3+/Yb3+ codoped tellurite glass, Tm3+/Yb3+ codoped tellurite glass also could be a promising material for S-band amplification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Balda and A. Oleaga, Opt. Mater. 24, 83 (2003).CrossRefADSGoogle Scholar
  2. 2.
    R. Paschotta, P. R. Barber, A. C. Tropper, and D. C. Hanna, J. Opt. Soc. Am. B 14, 1213 (1997).CrossRefADSGoogle Scholar
  3. 3.
    T. Murata, H. Takebe, and K. Morinaga, J. Am. Ceram. Soc. 81, 249 (1998).CrossRefGoogle Scholar
  4. 4.
    J. S. Wang, D. P. Machewirth, and F. Wu, Opt. Lett. 19, 1448 (1994).CrossRefADSGoogle Scholar
  5. 5.
    S. Tanabe, Proc. SPIE 4282, 85 (2001).CrossRefADSGoogle Scholar
  6. 6.
    K. J. Y. Allain, M. Monerie, H. Poignant, and T. Georges, J. Non-Cryst. Solids 161, 270 (1993).CrossRefADSGoogle Scholar
  7. 7.
    C. Floridia, M. T. Carvalho, S. R. Lüthi, and A. S. L. Gomes, Opt. Lett. 29, 1983–1985 (2004).CrossRefADSGoogle Scholar
  8. 8.
    P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, Opt. Quantum Electron. 36, 201–212 (2004).CrossRefGoogle Scholar
  9. 9.
    Jun Chang, Qingpu Wang, and Gangding Peng, Opt. Mat. 28, 1088–1094 (2006).CrossRefGoogle Scholar
  10. 10.
    Jun Chang, Qingpu Wang, Xingyu Zhang, Zejin Liu, Zhaojun Liu, and Gangding Peng, Opt. Express 13, 3902–3912 (2005).CrossRefADSGoogle Scholar
  11. 11.
    Y. Chen, Y. Huang, and Z. Luo, Chem. Phys. Lett. 382, 481 (2003).CrossRefADSGoogle Scholar
  12. 12.
    B. R. Judd, Phys. Rev. 127, 750 (1962).CrossRefADSGoogle Scholar
  13. 13.
    G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).CrossRefADSGoogle Scholar
  14. 14.
    W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424–4442 (1968).CrossRefADSGoogle Scholar
  15. 15.
    N. Spector, R. Reisfeld, and L. Boehm, Chem. Phys. Lett. 49, 49–53 (1977).CrossRefADSGoogle Scholar
  16. 16.
    Zhangdi Xu, Yujin Chen, and Yanfu Lin, J. Alloys Comp. 481, 411–416 (2009).CrossRefGoogle Scholar
  17. 17.
    Ki-Soo Lim, P. Babu, and C. K. Jayasankar J. Alloys Comp. 385, 12–18 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Q. J. Huang
    • 1
  • Q. P. Wang
    • 1
  • J. Chang
    • 1
  • X. Y. Zhang
    • 1
  • Z. J. Liu
    • 2
  • G. Y. Yu
    • 1
  1. 1.School of Information Science and EngineeringShandong UniversityJinanChina
  2. 2.Institute of OptoelectronicsNational University of Defense TechnologyChangshaChina

Personalised recommendations