Laser Physics

, Volume 20, Issue 3, pp 604–617 | Cite as

Frequency and phase synchronization in neuromagnetic cortical responses to flickering-color stimuli

  • S. F. Timashev
  • Yu. S. Polyakov
  • R. M. Yulmetyev
  • S. A. Demin
  • O. Yu. Panischev
  • S. Shimojo
  • J. Bhattacharya
Biophotonics

Abstract

In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms—MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett. 76, 1804 (1996).CrossRefADSGoogle Scholar
  2. 2.
    J. Bhattacharya, Acta Neurobiol. Exp. 61, 309 (2001).Google Scholar
  3. 3.
    R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach (IEEE Press, Wiley-Intersci., New York, 2002).Google Scholar
  4. 4.
    R. Hornero, D. Abasolo, N. Jimeno, C. I. Sanchez, J. Poza, and M. Aboy, IEEE Trans. Biomed. Eng. 53, 210 (2006).CrossRefGoogle Scholar
  5. 5.
    A. Fernandez, J. Quintero, R. Hornero, P. Zuluaga, M. Navas, C. Gomez, J. Escudero, N. Garcia-Campos, J. Biederman, and T. Ortiz, Biol. Psychiatry J. 65, 571 (2009).CrossRefGoogle Scholar
  6. 6.
    J. Bhattacharya, K. Watanabe, and S. Shimojo, Int. J. Bifur. Chaos. 14, 2701 (2004).MATHCrossRefGoogle Scholar
  7. 7.
    K. Watanabe, T. Imada, K. Nihei, and S. Shimojo, NeuroRep. 13, 2161 (2002).CrossRefGoogle Scholar
  8. 8.
    R. M. Yulmetyev, D. G. Yulmetyeva, P. Hänggi, S. Shimojo, and J. Bhattacharya, JETP 104, 644 (2007).CrossRefADSGoogle Scholar
  9. 9.
    S. F. Timashev, Flicker-Noise Spectroscopy: Information in Chaotic Signals (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  10. 10.
    S. F. Timashev and Yu. S. Polyakov, Fluct. Noise Lett. 7, R15 (2007); http://arxiv.org/abs/0812.0030.CrossRefGoogle Scholar
  11. 11.
    S. F. Timashev, Russ. J. Electrochem. 42, 424 (2006).CrossRefGoogle Scholar
  12. 12.
    S. F. Timashev and Yu. S. Polyakov, Int. J. Bifur. Chaos. 18, 2793 (2008); http://arXiv.org/abs/0812.2141.CrossRefGoogle Scholar
  13. 13.
    P. Bak, How Nature Works. The Science of Self-Organized Criticality (Oxford Univ., Oxford, 1997).Google Scholar
  14. 14.
    S. F. Timashev, Yu. S. Polyakov, R. M. Yulmetyev, S. A. Demin, O. Yu. Panischev, S. Shimojo, and J. Bhattacharya, Laser Phys. 19, 836 (2009).CrossRefADSGoogle Scholar
  15. 15.
    H. G. Schuster, Deterministic Chaos: An Introduction (Physik-Verlag, Weinheim, 1984).MATHGoogle Scholar
  16. 16.
    V. S. Vladimirov, Equations of Mathematical Physics (Marcel Dekker, New York, 1971).Google Scholar
  17. 17.
    S. F. Timashev, Yu. S. Polyakov, P. I. Misurkin, and S. G. Lakeev, “Anomalous Diffusion in the Dynamics of Complex Processes,” http://arxiv.org/abs/0908.4118.
  18. 18.
    S. F. Timashev, Russ. J. Phys. Chem. 75, 1742 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • S. F. Timashev
    • 1
    • 2
    • 3
  • Yu. S. Polyakov
    • 3
  • R. M. Yulmetyev
    • 4
    • 5
  • S. A. Demin
    • 4
    • 5
  • O. Yu. Panischev
    • 4
    • 5
  • S. Shimojo
    • 6
  • J. Bhattacharya
    • 7
    • 8
  1. 1.Institute of Laser and Information TechnologiesRussian Academy of SciencesTroitskRussia
  2. 2.Karpov Institute of Physical ChemistryMoscowRussia
  3. 3.USPolyResearchAshlandUSA
  4. 4.Department of PhysicsKazan State UniversityKazanTatarstan, Russia
  5. 5.Department of PhysicsTatarstan State University of Humanities and EducationKazanTatarstan, Russia
  6. 6.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  7. 7.Department of Psychology, Goldsmiths CollegeUniversity of LondonNew CrossUK
  8. 8.Commission for Scientific VisualizationAustrian Academy of SciencesViennaAustria

Personalised recommendations