Advertisement

Laser Physics

, Volume 20, Issue 3, pp 694–699 | Cite as

Quantum optical measurements in ultracold gases: Macroscopic Bose-Einstein condensates

  • I. B. MekhovEmail author
  • H. Ritsch
Physics of Cold Trapped Atoms

Abstract

We consider an ultracold quantum degenerate gas in an optical lattice inside a cavity. This system represents a simple but key model for “quantum optics with quantum gases,” where a quantum description of both light and atomic motion is equally important. Due to the dynamical entanglement of atomic motion and light, the measurement of light affects the many-body atomic state as well. The conditional atomic dynamics can be described using the Quantum Monte Carlo Wave Function Simulation method. In this paper, we emphasize how this usually complicated numerical procedure can be reduced to an analytical solution after some assumptions and approximations valid for macroscopic Bose-Einstein condensates (BEC) with large atom numbers. The theory can be applied for lattices with both low filling factors (e.g. one atom per lattice site in average) and very high filling factors (e.g., a BEC in a double-well potential). The purity of the resulting multipartite entangled atomic state is analyzed.

Keywords

Atom Number Coherent State Laser Physics Atomic State High Filling Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Kohl, and T. Esslinger, Nature 450, 268 (2007).CrossRefADSGoogle Scholar
  2. 2.
    Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Nature 450, 272 (2007).CrossRefADSGoogle Scholar
  3. 3.
    S. Slama, S. Bux, G. Krenz, C. Zimmermann, and Ph. W. Courteille, Phys. Rev. Lett. 98, 053603 (2007).CrossRefADSGoogle Scholar
  4. 4.
    S. Ritter, F. Brennecke, C. Guerlin, K. Baumann, T. Donner, and T. Esslinger, Appl. Phys. B 95, 213 (2009).CrossRefADSGoogle Scholar
  5. 5.
    F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science 322, 235 (2008).CrossRefADSGoogle Scholar
  6. 6.
    C. Maschler and H. Ritsch, Phys. Rev. Lett. 95, 260401 (2005).CrossRefADSGoogle Scholar
  7. 7.
    I. B. Mekhov, C. Maschler, and H. Ritsch, Nature Phys. 3, 319 (2007).CrossRefADSGoogle Scholar
  8. 8.
    I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. Lett. 98, 100402 (2007).CrossRefADSGoogle Scholar
  9. 9.
    I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. A 76, 053618 (2007).CrossRefADSGoogle Scholar
  10. 10.
    C. Maschler, I. B. Mekhov, and H. Ritsch, Eur. Phys. J. D 146, 545 (2008).CrossRefADSGoogle Scholar
  11. 11.
    I. B. Mekhov and H. Ritsch, Phys. Rev. Lett. 102, 020403 (2009).CrossRefADSGoogle Scholar
  12. 12.
    I. B. Mekhov, C. Maschler, and H. Ritsch, Phys. Rev. A 80, 013604 (2009).CrossRefADSGoogle Scholar
  13. 13.
    I. B. Mekhov and H. Ritsch, Laser Phys. 19, 610 (2009).CrossRefADSGoogle Scholar
  14. 14.
    A. Vukics, W. Niedenzu, and H. Ritsch, Phys. Rev. A 79, 013828 (2009).CrossRefADSGoogle Scholar
  15. 15.
    H. Zoubi and H. Ritsch, arXiv:0902.2638.Google Scholar
  16. 16.
    W. Chen, D. Meiser, and P. Meystre, Phys. Rev. A 75, 023812 (2007).CrossRefADSGoogle Scholar
  17. 17.
    J. Larson, B. Damski, G. Morigi, and M. Lewenstein, Phys. Rev. Lett. 100, 050401 (2008).CrossRefADSGoogle Scholar
  18. 18.
    J. Larson, S. Fernandez-Vidal, G. Morigi, and M. Lewenstein, New J. Phys. 10, 045002 (2008).CrossRefADSGoogle Scholar
  19. 19.
    K. Eckert, O. Romero-Isart, M. Rodriguez, M. Lewenstein, E. Polzik, and A. Sanpera, Nature Phys. 4, 50 (2008).CrossRefADSGoogle Scholar
  20. 20.
    A. B. Bhattacherjee, Opt. Commun. 281, 3004 (2008).CrossRefADSGoogle Scholar
  21. 21.
    J. M. Zhang, W. M. Liu, and D. L. Zhou, Phys. Rev. A 77, 033620 (2008).CrossRefADSGoogle Scholar
  22. 22.
    J. M. Zhang, W. M. Liu, and D. L. Zhou, Phys. Rev. A 78, 043618 (2008).CrossRefADSGoogle Scholar
  23. 23.
    J. Ye, J. Zhang, W. Liu, K. Zhang, Y. Li, Z.-Y. Ou, and W. Zhang, arXiv:0812.4077.Google Scholar
  24. 24.
    A. B. Bhattacherjee, arXiv:0906.2624.Google Scholar
  25. 25.
    K. Lakomy, Z. Idziaszek, and M. Trippenbach, arXiv:0904.2927.Google Scholar
  26. 26.
    L. Guo, S. Chen, B. Frigan, L. You, and Y. Zhang, Phys. Rev. A 79, 013630 (2009).CrossRefADSGoogle Scholar
  27. 27.
    W. Chen and P. Meystre, Phys. Rev. A 79, 043801 (2009).CrossRefADSGoogle Scholar
  28. 28.
    W. Chen, K. Zhang, D. S. Goldbaum, M. Bhattacharya, and P. Meystre, Phys. Rev. A 80, 011801(R) (2009).ADSGoogle Scholar
  29. 29.
    K. Zhang, W. Chen, and P. Meystre, arXiv:0906.4143.Google Scholar
  30. 30.
    J. M. Zhang, S. Cui, H. Jing, D. L. Zhou, and W. M. Liu, arXiv:0907.1200.Google Scholar
  31. 31.
    S. Rist, C. Menotti, and G. Morigi, arXiv:0904.0915.Google Scholar
  32. 32.
    L. S. Gradstein and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, Amsterdam, 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikUniversität InnsbruckInnsbruckAustria
  2. 2.Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations