Laser Physics

, Volume 20, Issue 3, pp 581–590 | Cite as

Numerical calculation of strong-field laser-atom interaction: An approach with perfect reflection-free radiation boundary conditions

  • M. Heinen
  • H.-J. Kull
Strong Field and Attosecond Physics


The time-dependent, single-particle Schrödinger equation with a finite-range potential is solved numerically on a three-dimensional spherical domain. In order to correctly account for outgoing waves, perfect reflection-free radiation boundary conditions are used on the surface of a sphere. These are computationally most effective if the particle wavefunction is expanded in the set of spherical harmonics and computations are performed in the Kramers-Henneberger accelerated frame. The method allows one to solve the full ionization dynamics in intense laser fields within a small region of atomic dimensions.


Laser Physics Partial Wave Laser Field Outgoing Wave Occupation Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. C. Kulander, Phys. Rev. A 35, 445 (1987).CrossRefADSGoogle Scholar
  2. 2.
    M. S. Pindzola, G. J. Bottrell, and C. Bottcher, J. Opt. Soc. Am. B 7, 659 (1990).CrossRefADSGoogle Scholar
  3. 3.
    J. Crank and P. Nicolson, Proc. Camb. Phil. Soc. 43, 50 (1947).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    E. Cormier and P. Lambropoulos, J. Phys. B: At. Mol. Opt. Phys. 30, 77 (1997).CrossRefADSGoogle Scholar
  5. 5.
    H. Bachau, E. Cormier, P. Decleva, J. E. Hansen, and F. Martin, Rep. Prog. Phys. 64, 1815 (2001).CrossRefADSGoogle Scholar
  6. 6.
    H. Muller, Laser Phys. 9, 138 (1999).Google Scholar
  7. 7.
    D. Bauer and P. Koval, Comput. Phys. Commun. 174, 396 (2006).CrossRefADSGoogle Scholar
  8. 8.
    H. G. Muller and F. C. Kooiman, Phys. Rev. Lett. 81, 1207 (1998).CrossRefADSGoogle Scholar
  9. 9.
    E. S. Smyth, J. S. Parker, and K. Taylor, Comput. Phys. Commun. 114, 1 (1998).zbMATHCrossRefADSGoogle Scholar
  10. 10.
    M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comput. Phys. 47, 412 (1982).zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. 11.
    M. E. Riley and B. Ritchie, Phys. Rev. A 59, 3544 (1999).CrossRefADSGoogle Scholar
  12. 12.
    E. Cormier and P. Lambropoulos, J. Phys. B: At. Mol. Opt. Phys. 29, 1667 (1996).CrossRefADSGoogle Scholar
  13. 13.
    D. Neuhauser and M. Baer, J. Chem. Phys. 90, 4351 (1989).CrossRefADSGoogle Scholar
  14. 14.
    M. S. Child, Molecular Phys. 72, 89 (1991).CrossRefADSGoogle Scholar
  15. 15.
    C. W. McCurdy and C K. Stroud, Comp. Phys. Comm. 63, 323 (1991).zbMATHCrossRefADSGoogle Scholar
  16. 16.
    J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A 45, 4998 (1992).CrossRefADSGoogle Scholar
  17. 17.
    B. Engquist and A. Majda, Math. Comput. 31, 629 (1977).zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    K. Boucke, H. Schmitz, and H.-J. Kull, Phys. Rev. A 56, 763 (1997).CrossRefADSGoogle Scholar
  19. 19.
    M. Mangin-Brinet, J. Carbonell, and C. Gignoux, Phys. Rev. A 57, 3245 (1998).CrossRefADSGoogle Scholar
  20. 20.
    A. M. Ermolaev, I. V. Puzynin, A. V. Selin, and S. I. Vinitsky, Phys. Rev. A 60, 4831 (1999).CrossRefADSGoogle Scholar
  21. 21.
    X. Antoine and C. Besse, J. Comput. Phys. 188, 157 (2003).zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    M. Heinen and H.-J. Kull, Phys. Rev. E 79, 056709 (2009).CrossRefADSGoogle Scholar
  23. 23.
    H. A. Kramers, Collected Scientific Papers (North-Holland, Amsterdam, 1956).Google Scholar
  24. 24.
    W. C. Henneberger, Phys. Rev. Lett. 21, 838 (1968).CrossRefADSGoogle Scholar
  25. 25.
    L. Dimou and H.-J. Kull, Phys. Rev. A 61, 043404 (2000).CrossRefADSGoogle Scholar
  26. 26.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).Google Scholar
  27. 27.
    A. Messiah, Quantum Mechanics, Vol. 2 (North-Holland, Amsterdam, 1962).zbMATHGoogle Scholar
  28. 28.
    L. Lapidus and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science and Engineering (Wiley, New York, 1982).zbMATHGoogle Scholar
  29. 29.
    R. Shakeshaft, Z. Phys. D 8, 47 (1988).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Soft Condensed Matter, Research Centre JülichInstitute of Solid State ResearchJülichGermany
  2. 2.Institute of Theoretical Physics ARWTH Aachen UniversityAachenGermany

Personalised recommendations