Laser Physics

, Volume 20, Issue 2, pp 493–507 | Cite as

Monitoring of all hydrogen isotopologues at tritium laboratory Karlsruhe using Raman spectroscopy

  • M. Sturm
  • M. Schlösser
  • R. J. LewisEmail author
  • B. Bornschein
  • G. Drexlin
  • H. H. Telle
Laser Spectroscopy


We have recorded Raman spectra for all hydrogen isotopologues, using a CW Nd:YVO4 laser (5 W output power at 532 nm) and a high-throughput (f/1.8) spectrograph coupled to a Peltier-cooled (200 K) CCD-array detector (512 × 2048 pixels). A (static) gas cell was used in all measurements. We investigated (i) “pure” fillings of the homonuclear isotopologues H2, D2, and T2; (ii) equilibrated binary fillings of H2 + D2, H2 + T2, and D2 + T2, thus providing the heteronuclear isotopologues HD, HT, and DT in a controlled manner; and (iii) general mixtures containing all isotopologues at varying concentration levels. Cell fillings within the total pressure range 13–985 mbar were studied, in order to determine the dynamic range of the Raman system and the detection limits for all isotopologues. Spectra were recorded for an accumulation period of 1000 s. The preliminary data evaluation was based on simple peak-height analysis of the ro-vibrational Q1-branches, yielding 3σ measurement sensitivities of 5 × 10−3, 7 × 10−3, and 25 × 10−3 mbar for the tritium-containing isotopologues T2, DT, and HT, respectively. These three isotopologues are the relevant ones for the KATRIN experiment and in the ITER fusion fuel cycle. While the measurement reported here were carried out with static-gas fillings, the cells are also ready for use with flowing-gas samples.


Tritium Laser Physics Raman Signal Rotational Line Branch Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Brand, H. Geilmann, E. Crosson, and C. Rella. Rap. Commun. Mass Spectrom. 23, 1879 (2009)CrossRefGoogle Scholar
  2. 2.
    R.J. Lewis, H.H. Telle, B. Bornschein, O. Kazachenko, N. Kernert, and M. Sturm, Laser Phys. Lett. 5, 522 (2008).CrossRefGoogle Scholar
  3. 3.
    The KATRIN home page,
  4. 4.
    D. Murdoch, S. Beloglazov, P. Boucquey, H. Chung, M. Glugla, T. Hayashi, A. Perevezentsev, K. Sessions, and C. Taylor, Fusion Sci. Technol. 54, 3 (2008).Google Scholar
  5. 5.
    The ITER web pages on the Tokamak principle and technology,
  6. 6.
    C. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick, E. W. Otten, J. P. Schall, T. Thümmler, and C. Weinheimer, Eur. Phys. J. C 40, 440 (2005).CrossRefADSGoogle Scholar
  7. 7.
    V. M. Lobashev, V. N. Aseev, A. I. Belesev, A. I. Berlev, E. V. Geraskin, A. A. Golubev, O. V. Kazachenko, Yu. E. Kuznetsov, R. R Ostroumov, L. A. Rivkis, B.E. Stern, N. A. Titov, S. V. Zadorozhny, and Yu. I. Zakharov, Phys. Lett. B 460, 227 (1999).CrossRefADSGoogle Scholar
  8. 8.
  9. 9.
    “KATRIN Design Report 2004,” FZKA Scientific Report 7090 (2005).Google Scholar
  10. 10.
    L. Dörr, U. Besserer, M. Glugla, G. Hellriegel, W. Hell-Riegel, P. Schäfer, and J. Wendel, Fusion Sci. Technol. 48, 262 (2005).Google Scholar
  11. 11.
    O. Kazachenko, B. Bornschein, N. Kemert, L. Dörr, M. Glugla, V. Weber, and D. Stern, Fusion Sci. Technol. 54, 67 (2008).Google Scholar
  12. 12.
    A. Saenz, S. Jonsell, and P. Frölich, Phys. Rev. Lett. 84, 242 (2000).CrossRefADSGoogle Scholar
  13. 13.
    T. Uda, K. Okuno, and Y. Naruse, Fusion Technol. 21, 436 (1992).Google Scholar
  14. 14.
    U. Engelmann, M. Glugla, R.-D. Penzhorn, and H. J. Ache, Fusion Technol. 21, 430 (1992).Google Scholar
  15. 15.
    D. J. Taylor, M. Glugla, and R.-D. Penzhorn, Rev. Sci. Instrum. 72, 1970 (2001).CrossRefADSGoogle Scholar
  16. 16.
    R.-D. Penzhorn, N. Bekris, P. Coad, L. Dörr, M. Friedrich, M. Glugla, A. Haigh, R. Lässer, and A. Peacock, Fusion Eng. Design 49–50, 753 (2000).CrossRefGoogle Scholar
  17. 17.
    B. Bornschein, M. Glugla, K. Günther, T. L. Le, K. H. Simon, and S. Welte, Fusion Sci. Technol. 48, 15 (2005).Google Scholar
  18. 18.
    L. Dörr, J. Dehne, M. Glugla, H. Kissel, R.-D. Penzhorn, S. Welte, and J. Hemmerich, Fusion Sci. Technol. 41, 1155 (2002).Google Scholar
  19. 19.
    R. Lässer C. Caldwell-Nichols, L. Dörr, M. Glugla, S. Grünhagen, K. Günther, and R.-D. Penzhorn, Fusion Eng. Design 58–59, 411 (2001).CrossRefGoogle Scholar
  20. 20.
    D. K. Veirs and G. M. Rosenblatt, J. Mol. Spectrosc. 121, 401 (1987).CrossRefADSGoogle Scholar
  21. 21.
    G. E. Walrafen and P. N. Krishnan, Appl. Opt. 21, 359 (1982)CrossRefADSGoogle Scholar
  22. 22.
    C. F. Maes and Y. Chi, Proc. SPIE 2705, 93 (1996).CrossRefADSGoogle Scholar
  23. 23.
    D. A. Long, The Raman Effect (Wiley, Chichester, UK, 2002).CrossRefGoogle Scholar
  24. 24.
    E. Kriesten, F. Alsmeyer, A. Bardow, and W. Marquardt, Chemom. Intell. Lab. Syst. 91, 181 (2008).CrossRefGoogle Scholar
  25. 25.
    F. Alsmeyer, H.-J. Koß, and W. Marquardt, Appl. Spectrosc. 58, 975 (2004).CrossRefADSGoogle Scholar
  26. 26.
    C. Schwartz and R.J. LeRoy, J. Mol. Spectrosc. 121, 420 (1987).CrossRefADSGoogle Scholar
  27. 27.
    S. V. N. Bhaskara Rao, A. P. Mishra, R. D’souza, and T. K. Balasubramanian, J. Quant. Spectrsoc. Radiat. Transfer 87, 203 (2004).CrossRefADSGoogle Scholar
  28. 28.
    V. Krylov, A. Rebane, D. Erni, O. Ollikainen, and U. Wild, Opt. Lett. 21, 2005 (1996).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Sturm
    • 1
  • M. Schlösser
    • 1
  • R. J. Lewis
    • 2
    Email author
  • B. Bornschein
    • 3
  • G. Drexlin
    • 1
  • H. H. Telle
    • 2
  1. 1.Institute for Experimental Nuclear PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Department of PhysicsSwansea UniversitySwanseaUK
  3. 3.Tritium Laboratory Karlsruhe (TLK), Institute for Technical PhysicsKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations