Laser Physics

, 19:2090 | Cite as

High-temperature operation of a diode-pumped passively Q-switched Nd:YAG/Cr4+:YAG laser

Solid State and Liquid Lasers

Abstract

The output performances of a diode-pumped Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber crystal were investigated function of temperature. Increase of the temperature from 25 to 150°C increased slightly the laser pulse energy, and did not change the pulse duration. Furthermore, an increased absorbed energy of the pump radiation was necessary at temperatures higher than 25°C in order to maintain Q-switch operation. Measurements concluded that Cr4+:YAG transmission did not vary when temperature increased to 150°C. The decrease of Nd:YAG emission cross section with temperature and the changes of resonator configuration due to thermal effects were considered as main reasons for this behavior. The results of this work are valuable for designing a laser-ignition system for industrial gas engine or automotive industry.

PACS numbers

42.55.-f 42.55.Xi 42.60.-v 42.60.By 

References

  1. 1.
    J. J. Zayhowski and C. Dill III, Opt. Lett. 19, 1427 (1994).CrossRefADSGoogle Scholar
  2. 2.
    A. Agnesi, S. Dell’Acqua, and G. C. Reali, Opt. Commun. 133, 211 (1997).CrossRefADSGoogle Scholar
  3. 3.
    J. Song, C. Li, N. S. Kim, and Ken-ichi Ueda, Appl. Opt. 39, 4954 (2000).CrossRefADSGoogle Scholar
  4. 4.
    H. Kofler, J. Tauer, G. Tartar, K. Iskra, J. Klausner, G. Herdin, and E. Wintner, Laser Phys. Lett. 4, 322 (2007).CrossRefGoogle Scholar
  5. 5.
    H. Koefler, J. Tauer, K. Iskra, G. Tartar, and E. Winner, in Technical Digest of Advanced Solid-State Photonics Meeting, Jan. 27–30, 2008 (Nara, Japan, 2008), pres. WB1.Google Scholar
  6. 6.
    M. Tsunekane, T. Inogara, A. Ando, K. Kanehara, and T. Taira, in Technical Digest of Advanced Solid-State Photonics Meeting, Jan. 27–30, 2008 (Nara, Japan, 2008), pres. MB4.Google Scholar
  7. 7.
    H. Sakai, H. Kan, and T. Taira, Opt. Express 16, 19891 (2008).Google Scholar
  8. 8.
    A. Szabo and R. A. Stein, J. Appl. Phys. 36, 1562 (1965).CrossRefADSGoogle Scholar
  9. 9.
    J. J. Degnan, IEEE J. Quantum Electron. 31, 1890 (1995).CrossRefADSGoogle Scholar
  10. 10.
    N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, Jap. J. Appl. Phys. 40, 1253 (2001).CrossRefADSGoogle Scholar
  11. 11.
    Y. Shimony, Z. Burshtein, and Y. Kalisky, IEEE J. Quantum Electron. 31, 1738 (1995).CrossRefADSGoogle Scholar
  12. 12.
    A. Siegman, “Passive Q-Switching,” in Lasers (Univ. Sci. Book, Sausalito, California, 1986).Google Scholar
  13. 13.
    G. Xiao, J. H. Lim, S. Yang, E. Van Stryland, M. Bass, and L. Weichman, IEEE J. Quantum Electron. 35, 1086 (1999).CrossRefADSGoogle Scholar
  14. 14.
    A. Rapaport, S. Zhao, G. Xiao, A. Howard, and M. Bass, Appl. Opt. 41, 7052 (2002).CrossRefADSGoogle Scholar
  15. 15.
    H. Lei, M. Gong, Y. Ping, and L. Qiang, Laser Phys. Lett. 4, 572 (2007)CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Laboratory of Solid-State Quantum ElectronicsNational Institute for Laser, Plasma and Radiation PhysicsBucharestRomania

Personalised recommendations