Laser Physics

, Volume 20, Issue 1, pp 68–77 | Cite as

Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy



An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Weitkamp, Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, Heidelberg 2005).Google Scholar
  2. 2.
    Laser Remote Sensing, Ed. by T. Fujii and T. Fukuchi (CRC, Boca Raton 2005).Google Scholar
  3. 3.
    S. Svanberg, “LIDAR,” in Springer Handbook of Lasers and Optics, Ed. by F. Träger (Springer, Heidelberg, 2007), pp. 1031–1052.Google Scholar
  4. 4.
    Proc. of the 24th Intern. Laser Radar Conf., Boulder, June 23–27, 2008 (NOAA, NCAR Boulder, Colorado 2008).Google Scholar
  5. 5.
    Proc. of the 13th Intern. Workshop on LIDAR Multiple Scattering Experiments, Ed. by A. G. Borovoi, Proc. SPIE 5829 (2005).Google Scholar
  6. 6.
    T. Vo-Dinh, Biomedical Photonics Handbook (CRC, New York, 2003).Google Scholar
  7. 7.
    Lasers in Medicine, Ed. by J. G. Fujimoto and D. L. Farkas (Plenum, New York, 2009).Google Scholar
  8. 8.
    S. Svanberg, “Electromagnetic Radiation in Scattering Media—Spectroscopic Aspects,” in Progress in Nonlinear Science, Vol. 2, Ed. by A. G. Litvak (Univ. of Nizhn. Novgorod, N. Novgorod, 2002), p. 429.Google Scholar
  9. 9.
    C. Klinteberg, A. Pifferi, S. Andersson-Engels, R. Cubeddu, and S. Svanberg, “In Vivo Absorption Spectroscopy of Tumor Sensitizers Using Femtosecond White Light,” Appl. Opt. 44, 2213 (2005).CrossRefADSGoogle Scholar
  10. 10.
    C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-Resolved NIR Spectroscopy for Quantitative Analysis of Intact Pharmaceutical Tablets,” Anal. Chem. 77, 1055 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Johansson, T. Johansson, M. Soto-Thompson, N. Bendsoe, K. Svanberg, S. Svanberg, and S. Andersson-Engels, “In Vivo Measurement of Parameters of Dosimetric Importance during Interstitial Photodynamic Therapy of Thick Skin Tumors,” J. Biomed. Opt. 11, 034029 (2006).CrossRefADSGoogle Scholar
  12. 12.
    T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards Accurate in Vivo Spectroscopy of the Human Prostate,” J. Biophotonics 1, 200 (2008).CrossRefGoogle Scholar
  13. 13.
    C. Klinteberg, R. Berg, C. Lindquist, S. Andersson-Engels, and S. Svanberg, “Diffusely Scattered Femto-second White Light Examination of Breast Tissue in Vitro and in Vivo,” SPIE 2626, 149 (1995).CrossRefADSGoogle Scholar
  14. 14.
    M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, and S. Svanberg, “Analysis of Gas Dispersed in Scattering Solids and Liquids,” Opt. Lett. 26, 16 (2001).CrossRefADSGoogle Scholar
  15. 15.
    G. Somesfalean, “Environmental Monitoring Using Diode-Laser-Based Spectroscopic Techniques”, PhD Dissertation (Lund University, 2004).Google Scholar
  16. 16.
    S. Svanberg, “Gas in Scattering Media Absorption Spectroscopy—GASMAS,” Proc. SPIE 7142, DOI: 10.1117/12.816469 (2008).Google Scholar
  17. 17.
    J. Moreno, Y. Goulas, F. Miglietta, P. North, U. Rascher, S. Svanberg, W. Verhouf, E. Middleton, B. Carnicero Dominguez, J.-L. Bezy, and M. Drusch, “FLEX—Fluorescence Explorer,” ESA Report SP-1313/4 (ESA-ESTEC, Noordwijk, 2008).Google Scholar
  18. 18.
    L. Persson, K. Svanberg, and S. Svanberg, “On the Potential for Human Sinus Cavity Diagnostics Using Diode Laser Gas Spectroscopy,” Appl. Phys. B 82, 313 (2006).CrossRefADSGoogle Scholar
  19. 19.
    L. Persson, M. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous Detection of Molecular Oxygen and Water Vapor in the Tissue Optical Window Using Tunable Diode Laser Spectroscopy,” Appl. Opt. 47, 2028 (2008).CrossRefADSGoogle Scholar
  20. 20.
    L. Persson, M. Andersson, F. Andersson, and S. Svanberg, “Approach to Optical Interference Fringe Reduction in Diode-Laser-Based Absorption Spectroscopy,” Appl. Phys. B 87, 523 (2007).CrossRefADSGoogle Scholar
  21. 21.
    G. Somesfalean, M. Sjöholm, J. Alnis J., C. af Klinteberg, S. Andersson-Engels, and S. Svanberg, “Concentration Measurement of Gas Imbedded in Scattering Media Employing Time and Spatially Resolved Techniques,” Appl. Opt. 41, 3538 (2002).CrossRefADSGoogle Scholar
  22. 22.
    J. Alnis, B. Anderson, M. Sjöholm, G. Somesfalean, and S. Svanberg, “Laser Spectroscopy on Free Molecular Oxygen Dispersed in Wood Materials,” Appl. Phys. B 77, 691 (2003).CrossRefADSGoogle Scholar
  23. 23.
    L. Persson, B. Anderson, M. Andersson, M. Sjöholm, and S. Svanberg, “Studies of Gas Exchange in Fruits Using Laser Spectroscopic Techniques,” in Proc. of the Fruitic 05, Information and Technology for Sustainable Fruit and Vegetable Production (Montpellier, Sept. 2005), pp. 543–552.Google Scholar
  24. 24.
    L. Persson, H. Gao, M. Sjöholm, and S. Svanberg, “Diode Laser Absorption Spectroscopy for Studies of Gas Exchange in Fruits,” Lasers Opt. Eng. 44, 687 (2006).CrossRefGoogle Scholar
  25. 25.
    T. Svensson, L. Persson, M. Andersson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Noninvasive Characterization of Pharmaceutical Solids by Diode Laser Oxygen Spectroscopy,” Appl. Spectr. 61, 784 (2007).CrossRefADSGoogle Scholar
  26. 26.
    T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “VCSEL-Based Oxygen Spectroscopy for Structural Analysis of Pharmaceutical Solids,” Appl. Phys. B 90, 345 (2008).CrossRefADSGoogle Scholar
  27. 27.
    M. Andersson, L. Persson, M. Sjöholm, and S. Svan berg, “Spectroscopic Studies of Wood-Drying Processes,” Opt. Express 14, 3641 (2006).CrossRefADSGoogle Scholar
  28. 28.
    L. Persson, E. Kristensson, L. Simonsson, and S. Svanberg, “Monte Carlo Simulations of Optical Human Sinusitis Diagnostics,” J. Biomed. Opt. 12(5) (2007).Google Scholar
  29. 29.
    M. Andersson, L. Persson, T. Svensson, and S. Svanberg, “Flexible Lock-in Detection System Based on Synchronized Computer Plug-in Boards Applied in Sensitive Gas Spectroscopy,” Rev. Sci. Instrum. 78, 113107 (2007).CrossRefADSGoogle Scholar
  30. 30.
    L. Persson, M. Andersson, T. Svensson, K. Svanberg, and S. Svanberg, “Non-Intrusive Optical Study of Gas and its Exchange in Human Maxillary Sinuses,” SPIE 6628, 662804 (2007).CrossRefGoogle Scholar
  31. 31.
    L. Persson, M. Andersson, M. Cassel-Engquist, K. Svanberg, and S. Svanberg, “Gas Monitoring in Human Sinuses Using Tunable Diode Laser Spectroscopy,” J. Biomed. Opt. 12(5) (2007).Google Scholar
  32. 32.
    M. Lewander et al., (to appear).Google Scholar
  33. 33.
    S. Lindberg, M. Lewander, T. Svensson, R. Siemund, K. Svanberg, and S. Svanberg, “Method for Studying Gas Composition in the Human Mastoid Using Laser Spectroscopy,” (to appear).Google Scholar
  34. 34.
    M. Lewander, Z. G. Guan, L. Persson, A. Olsson, and S. Svanberg, “Food Monitoring Based on Diode Laser Gas Spectroscopy,” Appl. Phys. B 93, 619 (2008).CrossRefADSGoogle Scholar
  35. 35.
    S. Svanberg, “Environmental and Medical Applications of Photonic Interactions,” Phys. Scripta T 110, 39 (2004).CrossRefADSGoogle Scholar
  36. 36.
    S. Svanberg, “Laser Based Diagnostics-from Cultural Heritage to Human Health,” Appl. Phys. B DOI: 10.1007/s00340-008-3092-5 (2008).Google Scholar
  37. 37.
    Z. G. Guan, M. Lewander R. Grönlund, H. Lundberg, and S. Svanberg, “Gas Analysis within Remote Porous Targets Using LIDAR Multi-Scatter Techniques,” Appl. Phys. B 93, 657 (2008).CrossRefADSGoogle Scholar
  38. 38.
    M. Sjöholm, L. Persson, and S. Svanberg, “Gas Diffusion Measurements in Porous Media by the Use of a Laser Spectroscopic Technique,” Manuscript, included in [39].Google Scholar
  39. 39.
    M. Sjöholm, “Laser Spectroscopic Analysis of Atmospheric Gases in Scattering Media,” PhD Dissertation (Lund University, 2006).Google Scholar
  40. 40.
    S. Svanberg, “Laser Spectroscopy in Development,” Europhys. News 33 (2002).Google Scholar
  41. 41.
    V. S. Letokhov, Laser Control of Atoms and Molecules (Oxford Univ., Oxford, 2007).Google Scholar
  42. 42.
    W. Persson and S. Svanberg, Laser Spectroscopy VIII (Springer, Heidelberg, 1988).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Atomic Physics Division and Lund Laser CentreLund UniversityLundSweden

Personalised recommendations