Laser Physics

, Volume 20, Issue 1, pp 125–138 | Cite as

Long-distance electron tunneling in proteins: A new challenge for time-resolved spectroscopy

Papers

Abstract

Long-distance electron tunneling is a fundamental process which is involved in energy generation in cells. The tunneling occurs between the metal centers in the respiratory enzymes, typically over distances up to 20 or 30 such distances, the tunneling time—i.e., the time during which an electron passes through the body of the protein molecule from one metal center to another—is of the order of 10 fs. Here the process of electron tunneling in proteins is reviewed, and a possibility of experimental observation of real-time electron tunneling in a single protein molecule is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Skulachev, Membrane Bioenergetics (Springer, Berlin, 1988).Google Scholar
  2. 2.
    D. G. Nicholls and S. J. Ferguson, Bioenergetics 3 (Elsevier Sci., San Diego, 2002).Google Scholar
  3. 3.
    D. DeVault and B. Chance, Biophys. J. 6, 825 (1966).CrossRefADSGoogle Scholar
  4. 4.
    D. DeVault, Quantum Mechanical Tunneling in Biological Systems (Cambridge Univ., Cambridge, 1984).Google Scholar
  5. 5.
    H. B. Gray and J. R. Winkler, Ann. Rev. Biochem. 65, 537 (1996).CrossRefGoogle Scholar
  6. 6.
    R. Langen, I. Chang, J. P. Germanas, J. H. Richards, J. R. Winkler, and H. B. Gray, Science 268, 1733 (1995).CrossRefADSGoogle Scholar
  7. 7.
    C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, and L. P. Dutton, Nature 355, 796 (1992).CrossRefADSGoogle Scholar
  8. 8.
    C. C. Page, C. C. Moser, X. Chen, and P. L. Dutton, Nature 402, 47 (1999).CrossRefADSGoogle Scholar
  9. 9.
    S. S. Skourtis and D. Beratan, Adv. Chem. Phys. 106, 377 (1999).CrossRefGoogle Scholar
  10. 10.
    R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).Google Scholar
  11. 11.
    M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999).CrossRefGoogle Scholar
  12. 12.
    A. A. Stuchebrukhov, Theor. Chem. Acc. 110, 291 (2003).Google Scholar
  13. 13.
    A. A. Stuchebrukhov, J. Theor. Comp. Chem. 2, 91 (2003).CrossRefGoogle Scholar
  14. 14.
    A. A. Stuchebrukhov, Adv. Chem. Phys. 118, 1 (2001).CrossRefGoogle Scholar
  15. 15.
    M. D. Newton, Chem. Rev. 767, 91 (1991).Google Scholar
  16. 16.
    E. S. Medvedev and A. A. Stuchebrukhov, Pur. Appl. Chem. 70, 2201 (1998).CrossRefGoogle Scholar
  17. 17.
    H. M. McConnel, J. Chem. Phys. 35, 508 (1961).CrossRefADSGoogle Scholar
  18. 18.
    S. Larsson, J. Am. Chem. Soc. 103, 4034 (1981).CrossRefGoogle Scholar
  19. 19.
    A. A. Stuchebrukhov and R. A. Marcus, J. Chem. Phys. 98, 8443 (1993).CrossRefADSGoogle Scholar
  20. 20.
    J. M. Lopez-Castillo, A. Filali-Mouhim, I. L. Plante, and J. P. Jay-Gerin, J. Phys. Chem. 99, 6864 (1995).CrossRefGoogle Scholar
  21. 21.
    A. Nitzan, J. Jortner, J. Wilkie, A. L. Burin, and M. A. Ratner, J. Phys. Chem. 104, 5661 (2000).Google Scholar
  22. 22.
    L. Y. Zhang, R. Murphy, and R. A. Friesner, J. Chem. Phys. 107, 450 (1997).CrossRefADSGoogle Scholar
  23. 23.
    C. Liang and M. D. Newton, J. Phys. Chem. 96, 2855 (1992).CrossRefGoogle Scholar
  24. 24.
    K. D. Jordan and M. N. Paddon-Row, J. Phys. Chem. 96, 1188 (1992).CrossRefGoogle Scholar
  25. 25.
    K. Kim, K. D. Jordan, and M. N. Paddon-Row, J. Phys. Chem. 98, 11053 (1994).CrossRefGoogle Scholar
  26. 26.
    R. Cave and M. D. Newton, Chem. Phys. Lett. 249, 15 (1996).CrossRefADSGoogle Scholar
  27. 27.
    R. Cave and M. D. Newton, J. Chem. Phys. 106, 9213 (1997).CrossRefADSGoogle Scholar
  28. 28.
    S. Larsson, J. Chem. Soc. Faraday Trans. 2, 1375 (1983).Google Scholar
  29. 29.
    P. Siddarth and R. A. Marcus, J. Phys. Chem. 94, 2985 (1993); J. Phys. Chem. 97, 2400 (1993).CrossRefGoogle Scholar
  30. 30.
    J. W. Evenson and M. Karplus, Science 262, 1247 (1993).CrossRefADSGoogle Scholar
  31. 31.
    M. Gruschus and A. Kuki, J. Phys. Chem. 97, 5581 (1993).CrossRefGoogle Scholar
  32. 32.
    J. J. Regan, S. M. Risser, D. N. Beratan, and J. N. Onuchic, J. Phys. Chem. 97, 13083 (1993).CrossRefGoogle Scholar
  33. 33.
    A. A. Stuchebrukhov, Chem. Phys. Lett. 225, 55 (1994).CrossRefADSGoogle Scholar
  34. 34.
    A. A. Stuchebrukhov, Chem. Phys. Lett. 265, 643 (1997).CrossRefADSGoogle Scholar
  35. 35.
    M. Ratner, J. Phys. Chem. 94, 4877 (1990).CrossRefGoogle Scholar
  36. 36.
    D. J. Katz and A. A. Stuchebrukhov, J. Chem. Phys. 109, 4960 (1998).CrossRefADSGoogle Scholar
  37. 37.
    I. Kurnikov and D. N. Beratan, J. Chem. Phys. 105, 9561 (1996).CrossRefADSGoogle Scholar
  38. 38.
    J. N. Gehlen, I. Daizadeh, A. A. Stuchebrukhov, and R. A. Marcus, Inorg. Chim. Acta 243, 271 (1996).CrossRefGoogle Scholar
  39. 39.
    J. N. Onuchic, D. N. Beratan, J. R. Winkler, and H. B. Gray, Science 258, 1740 (1992).CrossRefADSGoogle Scholar
  40. 40.
    I. Daizadeh, D. M. Medvedev, and A. A. Stuchebrukhov, Molec. Biol. Evol. 19, 406 (2002).Google Scholar
  41. 41.
    D. M. Medvedev, I. Daizadeh, and A. A. Stuchebrukhov, J. Am. Chem. Soc. 122, 6571 (2000).CrossRefGoogle Scholar
  42. 42.
    J. Kim and A. Stuchebrukhov, J. Phys. Chem. B 104, 8606 (2000).CrossRefGoogle Scholar
  43. 43.
    J. F. Cushing and S. Goldstein, Bohmian Mechanics and Quantum Theory: An Apprisal (Kluwer Academic, Dordtecht, Holland, 1996).Google Scholar
  44. 44.
    A. A. Stuchebrukhov, J. Chem. Phys. 104, 8424 (1996).CrossRefADSGoogle Scholar
  45. 45.
    A. A. Stuchebrukhov, J. Chem. Phys. 107, 6495 (1997).CrossRefADSGoogle Scholar
  46. 46.
    A. A. Stuchebrukhov, J. Chem. Phys. 108, 8499 (1998).CrossRefADSGoogle Scholar
  47. 47.
    J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).CrossRefADSGoogle Scholar
  48. 48.
    A. A. Stuchebrukhov, J. Chem. Phys. 108, 8510 (1998).CrossRefADSGoogle Scholar
  49. 49.
    A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (Macmillan, New York, 1982).Google Scholar
  50. 50.
    A. F. Voter and W. A. Goddard, Chem. Phys. 57, 253 (1981).CrossRefADSGoogle Scholar
  51. 51.
    M. D. Newton, J. Phys. Chem. 92, 3049 (1988).CrossRefGoogle Scholar
  52. 52.
    E. P. Bierwagen, T. R. Coley, and W. A. Goddard, Parallel Computing in Coputational Chemistry, ACS Symp. Ser., vol. 592, p. 84.Google Scholar
  53. 53.
    M. D. Newton, K. Ohta, and E. Zhong, J. Phys. Chem. 95, 2317 (1991).CrossRefGoogle Scholar
  54. 54.
    A. A. Stuchebrukhov, J. Chem. Phys. 118, 7898 (2003).CrossRefADSGoogle Scholar
  55. 55.
    X. H. Zheng and A. A. Stuchebrukhov, J. Phys. Chem. B 107, 9579 (2003).CrossRefGoogle Scholar
  56. 56.
    Y. Georgievskii and A. A. Stuchebrukhov, J. Chem. Phys. 113, 10438 (2000).CrossRefADSGoogle Scholar
  57. 57.
    I. Daizadeh, E. S. Medvedev, and A. A. Stuchebrukhov, Proc. Natl. Acad. Sci. USA 94, 3703 (1997).CrossRefADSGoogle Scholar
  58. 58.
    I. Daizadeh, J. X. Guo, and A. Stuchebrukhov, J. Chem. Phys. 110, 8865 (1999).CrossRefADSGoogle Scholar
  59. 59.
    J. Wang and A. A. Stuchebrukhov, Int. J. Quant. Chem. 80, 591 (2000).CrossRefGoogle Scholar
  60. 60.
    N. E. Miller, M. C. Wander, and R. J. Cave, J. Phys. Chem. A 103, 1084 (1999).CrossRefGoogle Scholar
  61. 61.
    I. A. Balabin and J. N. Onuchic, Science 114, 114 (2000).CrossRefADSGoogle Scholar
  62. 62.
    E. S. Medvedev and A. A. Stuchebrukhov, J. Chem. Phys. 107, 3821 (1997).CrossRefADSGoogle Scholar
  63. 63.
    R. Landauer and T. Martin, Rev. Mod. Phys. 66, 217 (1994).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaDavisUSA

Personalised recommendations