Advertisement

Laser Physics

, Volume 20, Issue 1, pp 32–37 | Cite as

Manifestation of the van der Waals surface interaction in the spontaneous emission of atoms into an optical nanofiber

  • V. G. MinoginEmail author
  • Síle Nic Chormaic
Papers

Abstract

We study the spontaneous emission of atoms near an optical nanofiber and analyze the coupling efficiency of the spontaneous emission into a nanofiber. We also investigate the influence of the van der Waals interaction of atoms with the surface of the optical nanofiber on the spectrum of coupled light. Using, as an example, 85Rb atoms we show that the van der Waals interaction may considerably extend the red wing of the spontaneous emission line and, accordingly, produce a well-defined asymmetry of the spontaneous emission spectrum coupled into an optical nanofiber.

Keywords

Laser Physics Spontaneous Emission 85Rb Atom 133Cs Atom Atomic Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Nha and W. Jhe, Phys. Rev. A 56, 2213 (1997).CrossRefADSGoogle Scholar
  2. 2.
    T. Sındergaard and B. Tromborg, Phys. Rev. A 64, 033812 (2001).Google Scholar
  3. 3.
    V. V. Klimov and M. Ducloy, Phys. Rev. A 69, 013812 (2004).Google Scholar
  4. 4.
    Fam Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, Phys. Rev. A 72, 032509 (2005).Google Scholar
  5. 5.
    G. Sagué, E. Vetsch, W. Alt, D. Meschede, and A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).Google Scholar
  6. 6.
    K. P. Nayak, P. N. Melentiev, M. Morinaga, Fam Le Kien, V. I. Balykin, and K. Hakuta, Opt. Express 15, 5431 (2007).CrossRefADSGoogle Scholar
  7. 7.
    M. Cai, O. Painter, and K. J. Vahala, Phys. Rev. Lett. 85, 74 (2000).CrossRefADSGoogle Scholar
  8. 8.
    J. Ward, D. O’shea, B. Shortt, M. Morrissey, K. Deasy, and S. Nic Chormaic, Rev. Sci. Instrum. 77, 083105 (2006).Google Scholar
  9. 9.
    K. P. Nayak and K. Hakuta, New J. Phys. 10, 053003 (2008).Google Scholar
  10. 10.
    Fam Le Kien and K. Hakuta, Phys. Rev. A 75, 013423 (2007).Google Scholar
  11. 11.
    Yu. S. Barash and V. L. Ginzburg, Usp. Fiz. Nauk 143, 360 (1984).Google Scholar
  12. 12.
    M. Oria, M. Chevrollier, D. Bloch, M. Fichet, and M. Ducloy, Europhys. Lett. 14, 527 (1999).CrossRefADSGoogle Scholar
  13. 13.
    R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973).Google Scholar
  14. 14.
    A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, 1983).Google Scholar
  15. 15.
    I. E. Dzyaloshinskii, E. M. Lifshitz, and L. Pitaevskii, Adv. Phys. 10, 165 (1961).CrossRefMathSciNetADSGoogle Scholar
  16. 16.
    I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Usp. Fiz. Nauk 73, 381 (1961) [Sov. Phys. Usp. 4, 153 (1961)].Google Scholar
  17. 17.
    Y. Tikochinsky and L. Spruch, Phys. Rev. A 48, 4223 (1993).CrossRefADSGoogle Scholar
  18. 18.
    M. Fichet, F. Schuller, D. Bloch, and M. Ducloy, Phys. Rev. A 51, 1553 (1995).CrossRefADSGoogle Scholar
  19. 19.
    H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).Google Scholar
  20. 20.
    A. Krishna, K. Pandy, A. Wasan, and V. Natarajan, Europhys. Lett. 72, 221 (2005).CrossRefADSGoogle Scholar
  21. 21.
    S. Chang and V. Minogin, Phys. Rep. 365, 65 (2002).zbMATHCrossRefADSGoogle Scholar
  22. 22.
    M. Chevrollier, D. Bloch, G. Rahmat, and M. Ducloy, Opt. Lett. 16, 1879 (1991).CrossRefADSGoogle Scholar
  23. 23.
    W. R. Johnson, V. A. Dzuba, and U. I. Safronova, Phys. Rev. A 69, 022508 (2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute of Spectroscopy Russian Academy of SciencesTroitsk, Moscow regionRussia
  2. 2.Physics DepartmentUniversity College CorkCorkIreland

Personalised recommendations