Laser Physics

, Volume 20, Issue 1, pp 78–84 | Cite as

Scanning near-field optical microscopy-based study of local dynamics of receptor-ligand interactions at the single molecule level

  • M. Mensi
  • K. Dukenbayev
  • S. K. SekatskiiEmail author
  • G. Dietler


A scanning near-field optical microscope (SNOM)—based modification of the method to study the dynamics of single molecule receptor—ligand interactions exploiting the fluorescence imaging by total internal reflection fluorescence microscopy is introduced. The main advantage of this approach consists in the possibility to study the single molecule interaction dynamics with a subwavelength spatial resolution and a submillisecond time resolution. Additionally, due to the much smaller irradiation area and some other technical features, such a modification enables to enlarge the scope of the receptor—ligand pairs to be investigated and to improve the temporal resolution. We briefly discuss corresponding experimental set up with a special accent on the SNOM operation in liquid and present some preliminary results of related investigations.


Laser Physics Tuning Fork Scan Ning Near Field Optical Microscopy Fiber Probe Quartz Tuning Fork 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida, Nature 374, 555 (1995).CrossRefADSGoogle Scholar
  2. 2.
    R. D. Valle, T. Funatsu, D. W. Pierce, L. Romberg, Y. Harada, and T. Yanagida, Nature 380, 451 (1996).CrossRefADSGoogle Scholar
  3. 3.
    H. Taguchi, T. Ueno, H. Tadakuma, M. Yoshida, and T. Funatsu, Nature Biotechnol. 19, 861 (2001).CrossRefGoogle Scholar
  4. 4.
    J. Kozuka, H. Yokota, Y. Arai, Y. Ishii, and T. Yanagida, Nature Chem. Biol. 2, 83 (2006).CrossRefGoogle Scholar
  5. 5.
    Y. Teramura, J. Ichinose, H. Takagi, K. Nishida, T. Yanagida, and Y. Sako, EMBO J. 25, 4215 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Nishikawa, H. Takagi, T. Shibata, A. H. Iwane, and T. Yanagida, Phys. Rev. Lett. 101, 128103 (2008).Google Scholar
  7. 7.
    Y. Ishii and T. Yanagida, HFSP J. 1, 15 (2007).CrossRefGoogle Scholar
  8. 8.
    T. Yanagida, M. Iwaki, and Y. Ishii, Phil. Trans. R. Soc. B: Bio. Sci. 363, 2123 (2008).CrossRefGoogle Scholar
  9. 9.
    G. I. Bell, Science 200, 618 (1978).CrossRefADSGoogle Scholar
  10. 10.
    Chemical Relaxation in Molecular Biology, Ed. by R. Rigler and I. Pecht (Springer, Heidelberg, 1976).Google Scholar
  11. 11.
    U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, and H. J. Guentherodt, Biophys. J. 70, 2437 (1996).CrossRefADSGoogle Scholar
  12. 13.
    M. Martinez-Yamout and H. M. McConnell, J. Mol. Biol. 244, 301 (1994).CrossRefGoogle Scholar
  13. 14.
    F. Schwesinger, R. Ros, T. Strunz, D. Anselmetti, H.-J. Güntherodt, A. Honegger, L. Jermutus, L. Tiefenauer, and A. Plückthun, Proc. Natl. Acad. Sci. USA 97, 9972 (2000).CrossRefADSGoogle Scholar
  14. 15.
    L. Chtcheglova, “Quasistatic and Dynamic Force Spectroscopy of Single Antigen-Aantibody Complexes and Fibrin—Fibrinogen Systems,” Thesis No. 2946 (EPFL, Lausanne, 2004), unpublished.Google Scholar
  15. 16.
    S. K. Sekatskii, Phil. Trans. R. Soc. A 362, 901 (2004); The whole issue of the journal is devoted to SNOM review so see also other papers therein.CrossRefADSGoogle Scholar
  16. 17.
    L. Aigouy, Y. de Wilde, and C. Frétigny, Les nouvelles microscopies. A la découvert du nanomonde, Ch. 3 (Belin, Paris, 2006).Google Scholar
  17. 18.
    Nano-optics and Near-field Optical Microscopy, Ed. by A. V. Zayats and D. Richards (Artech House, London, 2008).Google Scholar
  18. 19.
    S. K. Sekatskii, G. Dietler, and V. S. Letokhov, Chem. Phys. Lett. 452, 220 (2008).CrossRefADSGoogle Scholar
  19. 20.
    D. V. Serebryakov, S. K. Sekatskii, A. P. Cherkun, K. Dukenbayev, I. V. Morozov, V. S. Letokhov, and G. Dietler, J. Microsc. 229, 287 (2008).CrossRefMathSciNetGoogle Scholar
  20. 21.
    A. P. Cherkun, D. V. Serebryakov, S. K. Sekatskii, I. V. Morozov, and V. S. Letokhov, Rev. Sci. Instrum. 77, 033703 (2006).Google Scholar
  21. 22.
    D. V. Serebryakov, A. P. Cherkun, B. A. Loginov, and V. S. Letokhov, Rev. Sci. Instrum. 73, 1795 (2002).CrossRefADSGoogle Scholar
  22. 23.
    A. Naber, H.-J. Maas, K. Razavi, and U. C. Fischer, Rev. Sci. Instrum. 70, 3955 (1999).CrossRefADSGoogle Scholar
  23. 24.
    W. H. J. Rensen, N. F. Van Hulst, and S. B. Kammer, Appl. Phys. Lett. 71, 1557 (2000).CrossRefADSGoogle Scholar
  24. 25.
    F. H. Lei, J.-F. Angiboust, W. Qiao, G. D. Sockalingum, S. Dukic, L. Chrit, M. Troyon, and M. Manfait, J. Microsc. 216, 229 (2004).CrossRefMathSciNetGoogle Scholar
  25. 26.
    P. Lambelet, M. Pfeffer, A. Sayah, and F. Marquis-Weible, Ultramicroscopy 71, 117 (1998).CrossRefGoogle Scholar
  26. 27.
    D. A. Lapshin, V. N. Reshetov, S. K. Sekatskii, and V. S. Letokhov, JETP Lett. 67, 245 (1998).CrossRefGoogle Scholar
  27. 28.
    P. Tsai and Y. Y. Lu, Appl. Phys. Lett. 73, 2724 (1998).CrossRefADSGoogle Scholar
  28. 29.
    D. N. Davydov, K. N. Shelimov, T. L. Haslett, and M. Moskovits, Appl. Phys. Lett. 75, 1796 (1999).CrossRefADSGoogle Scholar
  29. 30.
    C. Hoeppener, J. P. Siebrasse, R. Peters, U. Kubitscheck, and A. Naber, Biophys. J. 88, 3681 (2005).CrossRefGoogle Scholar
  30. 31.
    M. Koopman, B. I. de Bakker, M. F. Garcia-Parajo, and N. F. Van Hulst, Appl. Phys. Lett. 83, 5083 (1999).CrossRefADSGoogle Scholar
  31. 32.
    M. Dittrich and S. Sibler, J. Colloid Interface Sci. 286, 487 (2005).CrossRefGoogle Scholar
  32. 33.
    N. N. Denisov, L. A. Chtcheglova, S. K. Sekatskii, and G. Dietler, Colloids Surf. B: Biointerfaces 63, 282 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Mensi
    • 1
  • K. Dukenbayev
    • 1
  • S. K. Sekatskii
    • 1
    • 2
    Email author
  • G. Dietler
    • 1
  1. 1.Laboratoire de Physique de la Matière Vivante, IPSB, Ecole Polytechnique Fédérale de LausanneBSPLausanneSwitzerland
  2. 2.Institute of Spectroscopy Russian Academy of SciencesTroitsk, Moscow regionRussia

Personalised recommendations