Laser Physics

, 19:1383 | Cite as

Study on the spectral characteristics of the cascaded parametric conversion in a single cavity tandem multi-channel PPMgLNs-based optical parametric oscillator

  • B. Wu
  • D. Z. Yang
  • P. P. Jiang
  • T. Chen
  • J. Kong
  • Y. H. Shen
Solid State and Liquid Lasers

Abstract

We report an acousto-optic Q-switched Nd:GdVO4 laser pumped flexibly tunable cascaded optical parametric oscillator (OPO) based on two separate multi-channel periodically poled magnesium oxide doped Lithium Niobate (PPMgLN). Even under lower pump power, long wavelength parametric output was found to be more easily generated than in single stage OPO. A cascaded idler output at 5.075 μm was found to be generated. A convenient method to monitor the occurring of the cascaded parametric process was also presented by measuring the spectrum of sum-frequency generation of the pump power and the cascaded signal power.

PACS numbers

42.65.Ky 42.72.Ai 42.79.Nv 

References

  1. 1.
    K. Koch, G. T. Moore, and E. C. Cheung, “Optical Parametric Oscillation with Intracavity Difference-frequency Mixing,” J. Opt. Soc. Am. B 12, 2268–2273 (1995).CrossRefADSGoogle Scholar
  2. 2.
    G. T. Moore and K. Koch, “The Tandem Optical Parametric Oscillator,” J. Quantum. Electron. 32, 2085–2094 (1996).CrossRefADSGoogle Scholar
  3. 3.
    P. B. Phua, K. S. Lai, and R. F. Wu, “Coupled Tandem Optical Parametric Oscillator (OPO): An OPO within an OPO,” Opt. Lett. 23, 1262–1264 (1998).CrossRefADSGoogle Scholar
  4. 4.
    K. J. McEwan and J. A. C. Terry, “A Tandem Periodically-poled Lithium Niobate (PPLN) Optical Parametric Oscillator (OPO),” Opt. Commun. 182, 423–432 (2000).CrossRefADSGoogle Scholar
  5. 5.
    D. Artigas and D. T. Reid, “High Idler Conversion in Femtosecond Optical Parametric Oscillators,” Opt. Commun. 210, 113–120 (2002).CrossRefADSGoogle Scholar
  6. 6.
    G. T. Moore and K. Koch, “Efficient High-gain Two-crystal Optical Parametric Oscillator,” J. Quan. Elec. 31, 761–768 (1995).CrossRefADSGoogle Scholar
  7. 7.
    P. V. Gorelik, F. N. C. Wong, D. Kolker, and J.-J. Zondy, “Cascaded Optical Parametric Oscillation with a Dual-grating Periodically Poled Lithium Niobate Crystal,” Opt. Lett. 31, 2039–2041 (2006).CrossRefADSGoogle Scholar
  8. 8.
    K. A. Tillman, and D. T. Reid, “Idler-resonant Femto-second Tandem Optical Parametric Oscillator Tuning from 2.1 to 4.2 μm,” J. Opt. Soc. Am. B 21, 1551–1558 (2004).CrossRefADSGoogle Scholar
  9. 9.
    M. E. Dearborn, K. Koch, G. T. Moore, and J. C. Diels, “Greater Than 100% Photon-conversion Efficiency from an Optical Parametric Oscillator with Intracavity Difference-frequency Mixing,” Opt. Lett. 23, 759–761 (1998).CrossRefADSGoogle Scholar
  10. 10.
    M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, and T. P. Grayson, “Cascaded Optical Parametric Oscillations,” Opt. Express 1, 49–53 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    P. Jiang, S. Cai, B. Wu, D. Yang, J. Kong, and Y. Shen, “High-energy PPMgLN Optical Parametric Oscillator Pumped by a 1.064 μm E-O Q-switched Nd:YAG Laser,” Laser Phys. (in press).Google Scholar
  12. 12.
    B. Wu, Y. H. Shen, and S. S. Cai, “Widely Tunable High Power OPO Based on a Periodically Poled MgO Doped Lithium Niobate Crystal,” Opt. Laser Tech. 39, 1115–1119 (2007).CrossRefADSGoogle Scholar
  13. 13.
    S. S. Cai, B. Wu, H. B. Xu, J. W. Shen, and Y. H. Shen, “Study on Infrared Optical Parametric Oscillator Based on PPMgLN,” J. Infrared Millim. Waves 25, 338–341 (2006) (in Chinese).Google Scholar
  14. 14.
    Y. H. Shen, S. Alam, K. K. Chen, D. Lin, S. S. Cai, B. Wu, P. P. Jiang, A. Malinowski, and D. J. Richardson, “PPMgLN-based High-power Optical Parametric Oscillator Pumped By Yb3+-doped Fiber Amplifier Incorporates Active Pulse Shaping,” IEEE J. Sel. Topics Quantum Electron. (in press).Google Scholar
  15. 15.
    S. V. Garnov, S. A. Solokhin, E. D. Obraztsova, A. S. Lobach, P. A. Obraztsov, A. I. Chernov, V. V. Bukin, A. A. Sirotkin, Y. D. Zagumennyi, Y. D. Zavartsev, S. A. Kutovoi, and I. A. Shcherbakov, “Passive Mode-locking With Carbon Nanotube Saturable Absorber in Nd:GdVO4 and Nd:Y0.9Gd0.1VO4 Lasers Operating at 1.34 μm,” Laser Phys. Lett. 4, 648–651 (2007).CrossRefGoogle Scholar
  16. 16.
    M. Li, S. Zhao, K. Yang, G. Li, D. Li, and J. An, “Diode-pumped Actively Q-switching and Mode-locking Nd:GdVO4 Laser,” Laser Phys. Lett. 5, 722–725 (2008).CrossRefGoogle Scholar
  17. 17.
    B. T. Zhang, J. L. He, H. T. Huang, C. H. Zuo, K. J. Yang, X. L. Dong, J. L. Xu, and S. Zhao, “Passive Q-switch Mode-locking of 1.34 μm Nd:GdVO4 Lasers with Co2+: LMA Saturable Absorber,” Laser Phys. Lett. 6, 22–25 (2009).CrossRefGoogle Scholar
  18. 18.
    W. Tian, C. Wang, G. Wang, S. Liu, and J. Liu, “Performance of Diode-pumped Passively Q-switched Mode-Locking Nd:GdVO4/KTP Green Laser With Cr4+:YAG,” Laser Phys. Lett. 4, 196–199 (2007).CrossRefGoogle Scholar
  19. 19.
    J. Gao, X. Yu, F. Chen, X. D. Li, R. P. Yan, Z. Zhang, J. H. Yu, and Y. Z. Wang, “Pulsed 456 nm Deep-Blue Light Generation by Acousto Optical Q-Switching and Intracavity Frequency Doubling of Nd:GdVO4,” Laser Phys. Lett. 5, 577–581 (2008).CrossRefGoogle Scholar
  20. 20.
    X. Zhang and H. Giessen, “Four-Wave Mixing Based on Cascaded Second-order Nonlinear Processes in a Femtosecond Optical Parametric Oscillator Operating near Degeneracy,” Appl. Phys. B 79, 441–447 (2004).CrossRefGoogle Scholar
  21. 21.
    K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly Tunable Mid-infrared Femtosecond Optical Parametric Oscillator Using All-Solid-State-Pumped Periodically Poled Lithium Niobate,” Opt. Lett. 22, 1458–1460 (1997).CrossRefADSGoogle Scholar
  22. 22.
    L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, and D. H. Jundt, “Efficient, Low-threshold Synchronously-Pumped Parametric Oscillation in Periodically-Poled Lithium Niobate over the 1.3 to 5.3 μm Range,” Opt. Commun. 152, 55–58 (1998).CrossRefADSGoogle Scholar
  23. 23.
    L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, and D. C. Hanna, “Optical Parametric Oscillation out to 6.3 μm in Periodically Poled Lithium Niobate under Strong Idler Absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • B. Wu
    • 1
  • D. Z. Yang
    • 1
  • P. P. Jiang
    • 1
  • T. Chen
    • 1
  • J. Kong
    • 1
  • Y. H. Shen
    • 1
  1. 1.State Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhouChina

Personalised recommendations