Laser Physics

, Volume 19, Issue 4, pp 836–854 | Cite as

Analysis of biomedical signals by flicker-noise spectroscopy: Identification of photosensitive epilepsy using magnetoencephalograms

  • S. F. Timashev
  • Yu. S. Polyakov
  • R. M. Yulmetyev
  • S. A. Demin
  • O. Yu. Panischev
  • S. Shimojo
  • J. Bhattacharya
Biophotonics

Abstract

The flicker-noise spectroscopy (FNS) approach is used to determine the dynamic characteristics of neuromagnetic responses by analyzing the magnetoencephalographic (MEG) signals recorded as the response of a group of control human subjects and a patient with photosensitive epilepsy (PSE) to equiluminant flickering stimuli of different color combinations. Parameters characterizing the analyzed stochastic biomedical signals for different frequency bands are identified. It is shown that the classification of the parameters of analyzed MEG responses with respect to different frequency bands makes it possible to separate the contribution of the chaotic component from the overall complex dynamics of the signals. It is demonstrated that the chaotic component can be adequately described by the anomalous diffusion approximation in the case of control subjects. On the other hand, the chaotic component for the patient is characterized by a large number of high-frequency resonances. This implies that healthy organisms can suppress the perturbations brought about by the flickering stimuli and reorganize themselves. The organisms affected by photosensitive epilepsy no longer have this ability. This result also gives a way to simulate the separate stages of the brain cortex activity in vivo. The examples illustrating the use of the “FNS device” for identifying even the slightest individual differences in the activity of human brains using their responses to external standard stimuli show a unique possibility to develop the “individual medicine” of the future.

PACS numbers

02.70.Hm 87.50.W- 87.85.dm 87.85.Ng 89.75.-k 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Rangayyan, Biomedical Signal Analysis: A Case-Study Approach (IEEE Press, Wiley-Interscience, New York, 2002).Google Scholar
  2. 2.
    H. E. Stanley, L. A. N. Amaral, A. L. Goldberger, S. Havlin, P. Ch. Ivanov, and C.-K. Peng, Physica A 270, 309 (1999).CrossRefADSGoogle Scholar
  3. 3.
    C.-K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H. E. Stanley, and A. L. Goldberger, Phys. Rev. Lett. 70, 1343 (1993).CrossRefADSGoogle Scholar
  4. 4.
    C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Chaos 5, 82 (1995).CrossRefADSGoogle Scholar
  5. 5.
    P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H. E. Stanley, and A. L. Goldberger, Nature 383, 323 (1996).CrossRefADSGoogle Scholar
  6. 6.
    J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West, Fractal Physiology (Oxford Univ., New York, 1994).Google Scholar
  7. 7.
    N. Sapir, R. Karasik, S. Havlin, E. Simon, and J. M. Hausdorff, Phys. Rev. E 67, 031903 (2003).Google Scholar
  8. 8.
    R. M. Yulmetyev, D. Yulmetyeva, and F. M. Gafarov, Physica A 354, 404 (2005).CrossRefADSGoogle Scholar
  9. 9.
    R. M. Yulmetyev, S. A. Demin, O. Yu. Panischev, P. Hänggi, S. F. Timashev, and G. V. Vstovsky, Physica A 369, 655 (2006).CrossRefADSGoogle Scholar
  10. 10.
    A. R. Muotri and F. H. Gage, Nature 441, 1087 (2006).CrossRefADSGoogle Scholar
  11. 11.
    J. S. Nicolis, Dynamics of Hierarchical Systems: An Evolutionary Approach (Springer, Berlin, 1986).MATHGoogle Scholar
  12. 12.
    S. F. Timashev, Flicker-Noise Spectroscopy: Information in Chaotic Signals (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  13. 13.
    S. F. Timashev, Russ. J. Electrochem. 42, 424 (2006).CrossRefGoogle Scholar
  14. 14.
    S. F. Timashev and Yu. S. Polyakov, Fluct. Noise Lett. 7, R15 (2007).CrossRefGoogle Scholar
  15. 15.
    S. F. Timashev and Yu. S. Polyakov, Int. J. Bifur. Chaos 18, (2008, in press).Google Scholar
  16. 16.
    J. Bhattacharya, K. Watanabe, and S. Shimojo, Int. J. Bifur. Chaos 14, 2701 (2004).MATHCrossRefGoogle Scholar
  17. 17.
    K. Watanabe, T. Imada, K. Nihei, and S. Shimojo, Neuroreport 13, 1 (2002).CrossRefGoogle Scholar
  18. 18.
    R. M. Yulmetyev, D. G. Yulmetyeva, P. Hänggi, S. Shimojo, and J. Bhattacharya, JETP 104, 644 (2007).CrossRefADSGoogle Scholar
  19. 19.
    R. M. Yulmetyev, P. Hänggi, D. G. Yulmetyeva, S. Shimojo, E. V. Khusaenova, K. Watanabe, and J. Bhattacharya, Physica A 383, 443 (2007).CrossRefADSGoogle Scholar
  20. 20.
    V. A. Kotelnikov, in Proc. of the 1st All-Union Conf. on the Technological Reconstruction of the Communication Sector and the Development of Low-Current Engineering, Moscow, Russia, 1933 (Vsesoyuznyi Energeticheskii Komitet, Upravlenie Svyazi RKKA, Moscow, 1933).Google Scholar
  21. 21.
    R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).MATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    A. I. Olemskoi and D. O. Kharchenko, Self-Organization of Self-Similar Stochastic Systems (R&C Dynamics, Institute for Computer Research, 2007) [in Russian].Google Scholar
  23. 23.
    V. V. Uchaikin, Phys. Usp. 46, 821 (2003).CrossRefADSGoogle Scholar
  24. 24.
    M. Gitterman, Phys. Rev. E 62, 6065 (2000).CrossRefADSGoogle Scholar
  25. 25.
    G. M. Zaslavsky, Physics of Chaos in Hamiltonian System, 2nd ed. (Imperial College Press, London, 2007).Google Scholar
  26. 26.
    A. Zoia, A. Rosso, and M. Kardar, Phys. Rev. E 76, 021116 (2007).Google Scholar
  27. 27.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, 2nd ed. (Dover, New York, 1990).Google Scholar
  28. 28.
    I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, New York, 2007).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • S. F. Timashev
    • 1
    • 2
  • Yu. S. Polyakov
    • 2
  • R. M. Yulmetyev
    • 3
    • 4
  • S. A. Demin
    • 3
    • 4
  • O. Yu. Panischev
    • 3
    • 4
  • S. Shimojo
    • 5
  • J. Bhattacharya
    • 6
    • 7
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia
  2. 2.USPolyResearchAshlandUSA
  3. 3.Department of PhysicsKazan State UniversityKazanRussia
  4. 4.Department of PhysicsKazan State Pedagogical UniversityKazanRussia
  5. 5.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  6. 6.Commission for Scientific VisualizationAustrian Academy of SciencesViennaAustria
  7. 7.Department of Psychology, Goldsmiths CollegeUniversity of LondonLondonUK

Personalised recommendations