Laser Physics

, Volume 19, Issue 4, pp 558–570 | Cite as

The stochastic Gross-Pitaevskii equation and some applications

Physics of Cold Trapped Atoms

Abstract

The stochastic Gross-Pitaevskii equation represents a versatile approach for studying the dynamics of trapped degenerate ultracold Bose gases in the presence of large phase and density fluctuations. Following a brief review of the original formulation of Stoof, which highlights the benefits of this approach and its relation to alternative theories, we present selected applications for the dynamics of effectively one-dimensional systems, and briefly discuss the generalization to two-dimensional systems, highlighting certain potential pitfalls in their numerical implementations.

PACS numbers

03.75.Kk 03.75.Lm 05.10.Gg 67.85.-d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Dalfovo, S. Giorgini, P. L. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).CrossRefADSGoogle Scholar
  2. 2.
    I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. (2008, in press).Google Scholar
  3. 3.
    Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, Ed. by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer, New York, 2008).MATHGoogle Scholar
  4. 4.
    A. Gorlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, and W. Ketterle, Phys. Rev. Lett. 87, 130420 (2001).Google Scholar
  5. 5.
    H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann, and C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001).Google Scholar
  6. 6.
    Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and J. Dalibard, Nature 441, 1118 (2006).CrossRefADSGoogle Scholar
  7. 7.
    B. Jackson and E. Zaremba, Phys. Rev. Lett. 87, 100404 (2001).Google Scholar
  8. 8.
    B. Jackson and E. Zaremba, Phys. Rev. Lett. 89, 150402 (2002).Google Scholar
  9. 9.
    B. Jackson and E. Zaremba, Phys. Rev. Lett. 88, 180402 (2002).Google Scholar
  10. 10.
    B. Jackson and E. Zaremba, Laser Phys. 12, 93 (2002).Google Scholar
  11. 11.
    N. P. Proukakis, Beyond the Gross-Pitaevskii Mean Field in Ref. [3]; arXiv:0706.3541v1.Google Scholar
  12. 12.
    N. P. Proukakis and B. Jackson, J. Phys. B 41, 203002 (2008).Google Scholar
  13. 13.
    V. I. Yukalov, Las. Phys. Lett. 4, 632 (2007).CrossRefGoogle Scholar
  14. 14.
    E. Zaremba, T. Nikuni, and A. Griffin, J. Low Temp. Phys. 116, 277 (1999).CrossRefGoogle Scholar
  15. 15.
    M. J. Bijlsma, E. Zaremba, and H. T. C. Stoof, Phys. Rev. A 62, 063609 (2000).Google Scholar
  16. 16.
    R. Walser, J. Williams, J. Cooper, and M. Holland, Phys. Rev. A 59, 3878 (1999).CrossRefADSGoogle Scholar
  17. 17.
    N. P. Proukakis, J. Phys. B 34, 4737 (2001).CrossRefADSGoogle Scholar
  18. 18.
    T. R. Kirkpatrick and J. R. Dorfman, Phys. Rev. A 28, 2576 (1983).CrossRefADSMathSciNetGoogle Scholar
  19. 19.
    T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys. 58, 301 (1985).CrossRefADSGoogle Scholar
  20. 20.
    T. R. Kirkpatrick and J. R. Dorfman, J. Low Temp. Phys. 58, 399 (1985).CrossRefADSGoogle Scholar
  21. 21.
    S. Richard, F. Gerbier, J. H. Thywissen, M. Hugbart, P. Bouyer, and A. Aspect, Phys. Rev. Lett. 91, 010405 (2003).Google Scholar
  22. 22.
    D. Hellweg, L. Cacciapuoti, M. Kottke, T. Schulte, K. Sengstock, W. Ertmer, and J. J. Arlt, Phys. Rev. Lett. 91, 010406 (2003).Google Scholar
  23. 23.
    L. Cacciapuoti, D. Hellweg, M. Kottke, T. Schulte, W. Ertmer, J. J. Arlt, K. Sengstock, and L. Santos, Phys. Rev. A 68, 053612 (2003).Google Scholar
  24. 24.
    D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 85, 3745 (2000).CrossRefADSGoogle Scholar
  25. 25.
    J. O. Andersen, U. Al Khawaja, and H. T. C. Stoof, Phys. Rev. Lett. 88, 070407 (2002).Google Scholar
  26. 26.
    S. A. Gardiner and S. A. Morgan, Phys. Rev. A 75, 043621 (2007).Google Scholar
  27. 27.
    M. D. Girardeau and R. Arnowitt, Phys. Rev. 113, 755 (1959).MATHCrossRefADSMathSciNetGoogle Scholar
  28. 28.
    C. W. Gardiner, Phys. Rev. A 56, 1414 (1997).CrossRefADSGoogle Scholar
  29. 29.
    Y. Castin and R. Dum, Phys. Rev. A 57, 3008 (1998).CrossRefADSGoogle Scholar
  30. 30.
    S. A. Morgan, M. Rusch, D. A. W. Hutchinson, and K. Burnett, Phys. Rev. Lett. 91, 250403 (2003).Google Scholar
  31. 31.
    Y. Kagan and B. V. Svistunov, Zh. Eksp. Teor. Fiz. 105, 353 (1994) [JETP 78, 187 (1994)].Google Scholar
  32. 32.
    M. Brewczyk, M. Gajda, and K. Rzazewski, J. Phys. B 40, R1 (2007).CrossRefADSGoogle Scholar
  33. 33.
    P. B. Blakie and M. J. Davis, Phys. Rev. A 72, 063608 (2005).Google Scholar
  34. 34.
    M. J. Davis, S. A. Morgan, and K. Burnett, Phys. Rev. Lett. 87, 160402 (2001).Google Scholar
  35. 35.
    M. J. Steel, M. K. Olsen, L. I. Plimak, P. D. Drummond, S. M. Tan, M. J. Collett, D. F. Walls, and R. Graham, Phys. Rev. A 58, 4824 (1998).CrossRefADSGoogle Scholar
  36. 36.
    A. Sinatra, C. Lobo, and Y. Castin, J. Phys. B 35, 3599 (2002).CrossRefADSGoogle Scholar
  37. 37.
    M. J. Davis, R. J. Ballagh, and K. Burnett, J. Phys. B 34, 4487 (2001).CrossRefADSGoogle Scholar
  38. 38.
    H. T. C. Stoof, Phys. Rev. Lett. 78, 768 (1997).CrossRefADSGoogle Scholar
  39. 39.
    H. T. C. Stoof, J. Low Temp. Phys. 114, 11 (1999).CrossRefGoogle Scholar
  40. 40.
    H. T. C. Stoof and M. J. Bijlsma, J. Low Temp. Phys. 124, 431 (2001).CrossRefGoogle Scholar
  41. 41.
    Duine R A and Stoof H T C 2001 Phys. Rev. A 65, 013603 (2001).Google Scholar
  42. 42.
    H. T. C. Stoof, in Coherent Atomic Matter Waves, Proc. of the Les Houches Summer School Session 72, 1999, Ed. by R. Kaiser et al. (Springer, Berlin, 2001).Google Scholar
  43. 43.
    C. W. Gardiner and P. Zoller, Phys. Rev. A 61, 033601 (2000).Google Scholar
  44. 44.
    M. J. Davis, C. W. Gardiner, and R. J. Ballagh, Phys. Rev. A 62, 063608 (2000).Google Scholar
  45. 45.
    C. W. Gardiner, J. R. Anglin, and T. I. A. Fudge, J. Phys. B 35, 1555 (2002).CrossRefADSGoogle Scholar
  46. 46.
    C. W. Gardiner and M. J. Davis, J. Phys B 36, 4731 (2003).CrossRefADSGoogle Scholar
  47. 47.
    R. N. Bisset, M. J. Davis, T. P. Simula, and P. B. Blakie, cond-mat/0804.0286v1.Google Scholar
  48. 48.
    U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C. Stoof, Phys. Rev. A 66, 013615 (2002); Phys. Rev. A 66, 059902(E) (2002).Google Scholar
  49. 49.
    N. P. Proukakis, Laser Phys. 13, 527 (2003).Google Scholar
  50. 50.
    R. A. Duine, B. W. A. Leurs, and H. T. C. Stoof, Phys. Rev. A 69, 053623 (2004).Google Scholar
  51. 51.
    N. P. Proukakis, J. Schmiedmayer, and H. T. C. Stoof, Phys. Rev. A 73, 053603 (2006).Google Scholar
  52. 52.
    N. P. Proukakis, Phys. Rev. A 74, 053617 (2006).Google Scholar
  53. 53.
    A. S. Bradley, P. B. Blakie, and C. W. Gardiner, J. Phys. B 38, 4259 (2005).CrossRefADSGoogle Scholar
  54. 54.
    A. S. Bradley and C. W. Gardiner, cond-mat/0602162.Google Scholar
  55. 55.
    A. S. Bradley, C. W. Gardiner, and M. J. Davis, Phys. Rev. A 77, 033616 (2008).Google Scholar
  56. 56.
    C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P. Anderson, Nature 455, 948 (2008).CrossRefADSGoogle Scholar
  57. 57.
    D. M. Stamper-Kurn, H.-J. Miesner, A. P. Chikkatur, S. Inouye, J. Stenger, and W. Ketterle, Phys. Rev. Lett. 81, 2194 (1998).CrossRefADSGoogle Scholar
  58. 58.
    V. N. Popov, Sov. Phys. JETP 20, 1185 (1965); V. N. Popov, Functional Integrals and Collective Excitations (Cambridge Univ., Cambridge, 1987).Google Scholar
  59. 59.
    U. Al Khawaja, N. P. Proukakis, J. O. Andersen, M. W. J. Romans, and H. T. C. Stoof, Phys. Rev. A 68, 043603 (2003).Google Scholar
  60. 60.
    H. J. Miesner, D. M. Stamper-Kurn, M. R. Andrews, D. S. Durfee, S. Inouye, and W. Ketterle, Science 279, 1005 (1998).CrossRefADSGoogle Scholar
  61. 61.
    M. Köhl, M. J. Davis, C. W. Gardiner, T. W. Hänsch, and T. Esslinger, Phys. Rev. Lett. 88, 080402 (2002).Google Scholar
  62. 62.
    I. Shvarchuck, Ch. Buggle, D. S. Petrov, K. Dieckmann, M. Zielonkowski, M. Kemmann, T. G. Tiecke, W. von Klitzing, G. V. Shlyapnikov, and J. T. M. Walraven, Phys. Rev. Lett. 89, 270404 (2002).Google Scholar
  63. 63.
    S. Ritter, A. Öttl, T. Donner, T. Bourdel, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 98, 090402 (2007).Google Scholar
  64. 64.
    M. Hugbart, J. A. Retter, A. F. Varon, P. Bouyer, A. Aspect, and M. J. Davis, Phys. Rev. A 75, 011602(R) (2007).Google Scholar
  65. 65.
    M. J. Davis and C. W. Gardiner, J. Phys. B 35, 733 (2002).CrossRefADSGoogle Scholar
  66. 66.
    N. Prokof’ev and B. Svistunov, Phys. Rev. A 66, 043608 (2002).Google Scholar
  67. 67.
    A. Negretti, S. P. Cockburn, C. Henkel, N. P. Proukakis (2009, in preparation).Google Scholar
  68. 68.
    A. A. Norrie, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 94, 040401 (2005).Google Scholar
  69. 69.
    R. G. Scott, D. A. W. Hutchinson, and C. W. Gardiner, Phys. Rev. A 74, 053605 (2006).Google Scholar
  70. 70.
    J. Ruostekoski and L. Isella, Phys. Rev. Lett. 95, 110403 (2005).Google Scholar
  71. 71.
    A. A. Penckwitt, R. J. Ballagh, and C. W. Gardiner, Phys. Rev. Lett. 89, 260402 (2002).Google Scholar
  72. 72.
    S. Choi, S. A. Morgan, and K. Burnett, Phys. Rev. A 57, 4057 (1998).CrossRefADSGoogle Scholar
  73. 73.
    M. Tsubota, K. Kasamatsu, and M. Ueda, Phys. Rev. A 65, 023603 (2002).Google Scholar
  74. 74.
    K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. A 67, 033610 (2003).Google Scholar
  75. 75.
    N. P. Proukakis, N. G. Parker, C. F. Barenghi, and C. S. Adams, Phys. Rev. Lett. 93, 130408 (2004).Google Scholar
  76. 76.
    S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, G. V. Shlyapnikov, and M. Lewenstein, Phys. Rev. Lett. 83, 5198 (1999).CrossRefADSGoogle Scholar
  77. 77.
    N. D. Mermin and H. Wagner, Phys. Rev. Lett. 22, 1133 (1966).CrossRefADSGoogle Scholar
  78. 78.
    P. C. Hohenberg, Phys. Rev. 158, 383 (1967).CrossRefADSGoogle Scholar
  79. 79.
    D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Phys. Rev. Lett. 84, 2551 (2000).CrossRefADSGoogle Scholar
  80. 80.
    Z. Hadzibabic, P. Krüger, M. Cheneau, S. P. Rath, and J. Dalibard, New J. Phys. 10, 045006 (2008).Google Scholar
  81. 81.
    V. Schweikhard, S. Tung, and E. A. Cornell, Phys. Rev. Lett. 99, 030401 (2007).Google Scholar
  82. 82.
    T. P. Simula and P. B. Blakie, Phys. Rev. Lett. 96, 020404 (2006).Google Scholar
  83. 83.
    T. W. B. Kibble, J. Phys. A 9, 1387 (1976).CrossRefADSGoogle Scholar
  84. 84.
    W. H. Zurek, Nature (London) 317, 505 (1985).CrossRefADSGoogle Scholar
  85. 85.
    J. R. Anglin and W. H. Zurek, Phys. Rev. Lett. 83, 1707 (1999).CrossRefADSGoogle Scholar
  86. 86.
    N. Prokof’ev, O. Ruebenacker, and B. Svistunov, Phys. Rev. Lett. 87, 270402 (2001).Google Scholar
  87. 87.
    J. Borrill and M. Gleiser, Nucl. Phys. B 483, 416 (1996).CrossRefADSGoogle Scholar
  88. 88.
    C. Gagne and M. Gleiser, Phys. Rev. E 61, 3483 (2000).CrossRefADSGoogle Scholar
  89. 89.
    D. Wojtas, MSc. Thesis (Univ. of Canterbury, Christchurch, 2006).Google Scholar
  90. 90.
    G. Lythe, L. Bettencourt, and S. Habib, Phys. Rev. D 60, 105039 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations