Laser Physics

, Volume 19, Issue 3, pp 437–444 | Cite as

Theoretical calculation of beam quality factor of large-mode-area fiber amplifiers

Fiber Optics

Abstract

In order to evaluate a fiber amplifier’s output beam quality, we have explored the beam quality factor calculation. A theoretical beam quality factor calculation method is presented in this paper. The method bases on modal power decomposition, laser rate equations and Fourier diffraction theory. Through the rate equations, each modal power weight factor at the fiber output facet is obtained. By the modal power decomposition, the optical field at the fiber output facet is established. Finally, running Fourier transformation, the beam diverging state in free space and corresponding M 2 parameter are obtained. The calculation process is verified with applying it to working out the beam M 2 parameters of large-mode-area (LMA) fiber amplifier system under different conditions. The numerical results help us well know and predict the out beam property. Some obtained results are also accord with other reporting outcomes.

PACS numbers

42.25.Bs 42.55.Wd 42.60.Jf 42.60.Pk 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Harun, K. Dimyati, K. K. Jayapalan, and H. Ahmad, Laser Phys. Lett. 4, 10 (2007).CrossRefGoogle Scholar
  2. 2.
    D. Chen, H. Ou, H. Fu, S. Qin, and S. Gao, Laser Phys. Lett. 4, 287 (2007).CrossRefGoogle Scholar
  3. 3.
    S.-Y. Chou, C.-H. Yeh, and S. Chi, Laser Phys. Lett. 4, 382 (2007).CrossRefGoogle Scholar
  4. 4.
    K.-H. Lin and J.-H. Lin, Laser Phys. Lett. 5, 449 (2008).CrossRefGoogle Scholar
  5. 5.
    S.-K. Liaw, C.-K. Huang, and Y.-L. Hsiao, Laser Phys. Lett. 5, 543 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Yoda, P. Polynkin, and M. Mansuripur, J. Lightwave Technol. 24, 1350 (2006).CrossRefADSGoogle Scholar
  7. 7.
    W. Stephan, Opt. Express 15, 15492 (2007).Google Scholar
  8. 8.
    A. S. Kurkov, Laser Phys. Lett. 4, 93 (2007).CrossRefGoogle Scholar
  9. 9.
    D. Beom Soo Soh, J. Nilsson, S. Baek, C. Codemard, Y. Jeong, and V. Philippov, J. Opt. Soc. Am. A 21, 1241 (2004).CrossRefADSGoogle Scholar
  10. 10.
    M. A. Mahdi, A. A. A. Bakar, M. H. Al-Mansoori, S. Shaari, and A. K. Zamzuri, Laser Phys. Lett. 5, 126 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Ahmad, M. A. Mahdi, M. I. Md Ali, and A. K. Zamzuri, Laser Phys. Lett. 5, 202 (2008).CrossRefGoogle Scholar
  12. 12.
    M. L. Gong, Y. Y. Yuan, C. Li, P. Yan, H. T. Zhang, and S. Y. Liao, Opt. Express 15, 3236 (2007).CrossRefADSGoogle Scholar
  13. 13.
    C. Ye, P. Yan, L. Huang, Q. Liu, and M. Gong, Laser Phys. Lett. 4, 376 (2007).CrossRefGoogle Scholar
  14. 14.
  15. 15.
    A. E. Siegman, IEEE J. Quantum Electron. 27, 146 (1991).CrossRefGoogle Scholar
  16. 16.
    Z. Jiang and J. R. Marciante, J. Opt. Soc. Am. B 25, 247 (2008).CrossRefADSGoogle Scholar
  17. 17.
    J. R. Marciante, in Proc. of the Photonic Applications Systems Technologies Conference, PhAST, May 8, Baltimore, Maryland, 2007, Poster Session I, JTuA86.Google Scholar
  18. 18.
    J. R. Marciante, in Proc. of the Advanced Solid-State Photonics (ASSP), Vancouver, Canada, Jan. 28, 2007, Poster Session III: WB14.Google Scholar
  19. 19.
    M. Hotoleanu, M. São derlund, D. Kliner, J. Koplow, and S. Tammela, in Proc. of SPIE of Fiber Lasers III: Technology, Systems, and Applications, San Jose, CA, USA, 23 Jan. 2006, Vol. 6102, 61021T1.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Center for Photonics and Electronics, State Key Laboratory of Tribology, Department of Precision InstrumentsTsinghua UniversityBeijingChina
  2. 2.Guilin Air Force InstituteGuilinChina

Personalised recommendations