Laser Physics

, Volume 19, Issue 2, pp 154–161 | Cite as

Investigation of molecular dynamics in β-carotene using femtosecond pump-FWM spectroscopy

  • V. Namboodiri
  • A. Scaria
  • M. Namboodiri
  • A. Materny
Modern Trends in Laser Physics


We have carried out two different pump four-wave mixing experiments, combining an initial pump excitation and a subsequent four-wave mixing probe process, on the photosynthetic pigment β-carotene to reveal different aspects of its molecular dynamics after photoexcitation. Firstly, the pump degenerate four-wave mixing (pump -DFWM) technique, in which the DFWM is resonant with the S1- to S n -transition of β-carotene, is used to monitor the events following excitation of the system. The transient shows a peculiar shape and is seen to depend on the energy of the initial pump pulse as well as on the concentration of the solute in the solvent. Secondly, pump coherent anti-Stokes Raman scattering (pump-CARS) is used to elucidate the excited state vibrational dynamics of β-carotene. This technique gives access to the dynamics of both ground and excited electronic states with vibrational selectivity.

PACS numbers

42.62.Fi 42.65.Hw 42.65.Dr 78.47.+p 82.53.-k 82.53.Uv 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ritz, A. Damjanovic, K. Schulten, J. P. Zhang, and Y. Koyama, Photosynth. Res. 66, 125 (2000).CrossRefGoogle Scholar
  2. 2.
    T. Polivka and V. Simdström, Chem. Rev. 104, 2021 (2004).CrossRefGoogle Scholar
  3. 3.
    D. M. Niedzwiedzki, J. O. Sullivan, T. Polivka, R. R. Birge, and H. A. Frank, J. Phys. Chem. A 110, 22872 (2006).Google Scholar
  4. 4.
    M. Yoshizawa, H. Aoki, and H. Hashimoto, Phys. Rev. A 63, 180301 (2001).Google Scholar
  5. 5.
    G. Cerullo, D. Polli, G. Lanzani, S. D. Silvestri, H. Hashimoto, and R. J. Cogdell, Science 298, 2395 (2002).CrossRefADSGoogle Scholar
  6. 6.
    M. Yoshizawa, H. Aoki, M. Ue, and H. Hashimoto, Phys. Rev. B 67, 174302 (2003).Google Scholar
  7. 7.
    W. Wohlleben, T. Buckup, H. Hashimoto, R. J. Cogdell, J. L. Herek, and M. Motzkus, J. Phys. Chem. A 108, 3320 (2004).Google Scholar
  8. 8.
    P. Kukura, D. W. McCamant, R. A. Mathies, J. Phys. Chem. A 108, 5921 (2004).CrossRefGoogle Scholar
  9. 9.
    J. L. P. Lustres, A. L. Dobryakov, A. Holzwarth, and M. Veiga, Angew. Chem. Int. Ed. 46, 3758 (2007).CrossRefGoogle Scholar
  10. 10.
    D. W. McCamant, J. E. Kim, and R. A. Mathies, J. Phys. Chem. A 106, 6030 (2002).CrossRefGoogle Scholar
  11. 11.
    D. W. McCamant, P. Kukura, and R. A. Mathies, J. Phys. Chem. A 107, 8208 (2003).CrossRefGoogle Scholar
  12. 12.
    T. Siebert, V. Engel, A. Materny, W. Kiefer, and M. Schmitt, J. Phys. Chem. A 107, 8355 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Motzkus, S. Pedersen, and A. H. Zewail, J. Phys. Chem. 100, 5620 (1996).CrossRefGoogle Scholar
  14. 14.
    T. Siebert, M. Schmitt, V. Engel, A. Materny, and W. Kiefer, J. Am. Chem. Soc. 124, 6242 (2002).CrossRefGoogle Scholar
  15. 15.
    T. Hornung, I. Skenderovic, and I. Motzkus, Chem. Phys. Lett. 402, 283 (2005).CrossRefADSGoogle Scholar
  16. 16.
    A. C. Eckbreth, Appl. Phys. Lett. 32, 421 (1978).CrossRefADSGoogle Scholar
  17. 17.
    T. Buckup, J. Savolainen, W. Wohlleben, J. L. Herek, H. Hashimoto, R. R. B. Correia, and M. Motzkus, J. Chem. Phys. 125, 194505 (2006).Google Scholar
  18. 18.
    H. Hashimoto and Y. Koyama, Chem. Phys. Lett. 163, 251 (1989).CrossRefADSGoogle Scholar
  19. 19.
    R. Maksimenka, B. Dietzek, A. Szeghalmi, T. Siebert, W. Kiefer, and M. Schmitt, Chem. Phys. Lett. 408, 307 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. Namboodiri
    • 1
  • A. Scaria
    • 1
  • M. Namboodiri
    • 1
  • A. Materny
    • 1
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany

Personalised recommendations