Advertisement

Laser Physics

, Volume 18, Issue 12, pp 1420–1428 | Cite as

Polarization-controlled dispersive wave redirection in dual-core photonic crystal fiber

  • I. Bugar
  • I. V. Fedotov
  • A. B. Fedotov
  • M. Koys
  • R. Buczynski
  • D. Pysz
  • J. Chlpik
  • F. Uherek
  • A. M. Zheltikov
Nanophotonics and Nanotechnologies

Abstract

The complex study of the polarization-controlled supercontinuum generation in a dual-core square lattice photonic crystal fiber made of multicomponent glass was accomplished. The fiber was excited by 100-fs pulses at a 1250-nm wavelength in the anomalous dispersion region and the registered spectra exhibited soliton fission and Raman-induced self-frequency shift processes. The study also involved a detailed analysis of the infrared-to-visible light conversion exhibiting a dispersive wave origin. The special dual-core properties were investigated by separate spectral analysis of each of the two cores and the near-field profile registration. The emphasis was on the visible part of the spectrum where the input energy and polarization direction dependences were studied. The increase in the input energy allowed for the tuning of the wavelength of the visible spectral features, a further rotation of the polarization direction had an effect on the spectral dependence of the light distribution between the cores. The dual-core fiber exhibited a significant coupling performance and the spectral dependence of the visible light distribution is in good agreement with the simulated coupling length spectral characteristics. Single-core excitation in the linear regime revealed the possibility of coupling 50% of the energy to the other core and the same polarization-controlled redirection possibilities as that at the nonlinear experiments. Dual-core excitation of the fiber enhances the light redirection effect with the application potential for the polarization-controlled directional coupler accompanied by nonlinear frequency conversion.

PACS numbers

42.81.Dp 42.81.Gs 42.65.Jx 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).CrossRefADSGoogle Scholar
  2. 2.
    P. St. J. Russell, Science 299, 358 (2003).CrossRefADSGoogle Scholar
  3. 3.
    P. M. Blanchard, J. G. Burnett, G. R. G. Erry, et al., Smart Mater. Struct. 9, 132 (2000).CrossRefADSGoogle Scholar
  4. 4.
    W. N. MacPherson, M. J. Gander, R. McBride, et al., Opt. Commun. 193, 97 (2001).CrossRefADSGoogle Scholar
  5. 5.
    L. Zhang and C. Yang, Opt. Express 11, 1015 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    R. Buczynski, Acta Phys. Pol. A 106, 141 (2004).ADSGoogle Scholar
  7. 7.
    J. Laegsgaard, Opt. Lett. 30, 3281 (2005).CrossRefADSGoogle Scholar
  8. 8.
    J. Laegsgaard, O. Bang, and A. Bjarklev, Opt. Lett. 29, 2473 (2004).CrossRefADSGoogle Scholar
  9. 9.
    A. Betlej, S. Suntsov, K. G. Makris, et al., Opt. Lett. 31, 1480 (2006).CrossRefADSGoogle Scholar
  10. 10.
    I. Bugar, I. V. Fedotov, A. B. Fedotov, et al., “Nonlinear Frequency Conversion in Double Core Photonic Crystal Fibers,” Proc. SPIE, 658241 (2007).Google Scholar
  11. 11.
    A. B. Fedotov, P. Zhou, A. P. Tarasevitch, et al., J. Raman Spectrosc. 33, 888 (2002).CrossRefADSGoogle Scholar
  12. 12.
    A. B. Fedotov, A. N. Naumov, I. Bugar, et al., IEEE J. Sel. Top. Quantum Electron. 8, 665 (2002).CrossRefGoogle Scholar
  13. 13.
    R. Buczynski, D. Lorenc, I. Bugar, et al., “Nonlinear Microstructured Fibers for Supercontinuum Generation,” Proc. SPIE, 660805 (2007).Google Scholar
  14. 14.
    “Self Made Z-Scan Study,” paper submitted.Google Scholar
  15. 15.
    E. Silvestre, M. V. Andrés, and P. Andrés, J. Lightwave Technol. 16, 923 (1998).CrossRefADSGoogle Scholar
  16. 16.
    A. Ferrando, E. Silvestre, J. J. Miret, et al., Opt. Lett. 24, 276 (1999).CrossRefADSGoogle Scholar
  17. 17.
    A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001).Google Scholar
  18. 18.
    D. Lorenc, I. Bugar, M. Aranyosiova, et al., Laser Phys. 18, 270 (2008).ADSGoogle Scholar
  19. 19.
    J. Herrmann, U. Griebner, N. Zhavoronkov, et al., Phys. Rev. Lett. 88, 173901 (2002).Google Scholar
  20. 20.
    D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, Science 301, 1705 (2003).CrossRefADSGoogle Scholar
  21. 21.
    I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, Opt. Express 12, 124 (2004)CrossRefADSGoogle Scholar
  22. 22.
    W. E. P. Padden, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. Bugar
    • 1
    • 2
  • I. V. Fedotov
    • 3
  • A. B. Fedotov
    • 3
  • M. Koys
    • 2
  • R. Buczynski
    • 4
  • D. Pysz
    • 5
  • J. Chlpik
    • 1
  • F. Uherek
    • 1
  • A. M. Zheltikov
    • 3
  1. 1.International Laser CenterBratislavaSlovakia
  2. 2.Department of Experimental Physics, Faculty of MathematicsPhysics and Informatics, Comenius UniversityMlynska, Dolina, BratislavaSlovakia
  3. 3.Physics Department and International Laser CenterMoscow State UniversityMoscowRussia
  4. 4.Information Optics Group, Faculty of PhysicsUniversity of WarsawWarsawPoland
  5. 5.Glass Laboratory, Institute of Electronic Materials TechnologyWarsawPoland

Personalised recommendations