Laser Physics

, Volume 18, Issue 9, pp 1080–1086

Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles

Laser Methods in Chemistry, Biology, and Medicine

Abstract

This paper describes the development of a novel-phase resolved system based on swept-source optical-coherence tomography (SSOCT) for the ultrasensitive imaging and monitoring of gas microbubbles in aqueous media. The developed phase-stabilized SSOCT (PhS-SSOCT) system has an axial resolution of 10 μm, a phase sensitivity of 0.03 rad, an imaging depth of up to 6 mm in air, and a scanning speed of 20 kHz for a single A line. The performance of the sensing system was evaluated in water-containing gas microbubbles with a different diameter. The obtained results demonstrate that bubbles with a diameter greater than 10 μm could be detected by both structural imaging and phase response, whereas bubbles with diameters of less than 10 μm could be detected by the phase response of the SSOCT with a high sensitivity. The accuracy for the measurement of the diameter of gas microbubbles is limited to 10 μm in structural imaging and 0.01 μm in phase-sensitive monitoring. The results from this study indicate that PhS-SSOCT could be used to detect fast-moving microbubbles in aqueous solutions and ultimately could be applied for rapid assessment in biofluids (e.g., blood) and tissues (e.g., skin) in vivo.

PACS numbers

42.62.Be 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. S. Neuman, News Physiol. Sci. 17, 77 (2002).Google Scholar
  2. 2.
    B. A. Hills and B. D. Butler, Undersea Biomed. Res. 8, 163 (1981).Google Scholar
  3. 3.
    R. S. Meltzer, P. W. Serruys, J. McGhie, et al., British Heart J. 44, 390 (1980).CrossRefGoogle Scholar
  4. 4.
    A. Bouakaz and N. de Jong, Ultrasound Med. Biol. 33, 187 (2007).CrossRefGoogle Scholar
  5. 5.
    R. Y. Nishi, in The Physiology and Medicine of Diving, Ed. by P. B. Bennett and D. Elliott (Saunders, London, 1993).Google Scholar
  6. 6.
    D. N. Walder, A. Evans, and H. V. Hempleman, Lancet 1, 897 (1968).CrossRefGoogle Scholar
  7. 7.
    R. G. Eckenhoff, C. S. Olstad, and G. Carrod, J. Appl. Physiol. 69, 914 (1990).Google Scholar
  8. 8.
    M. Malconian, P. B. Rock, J. Devine, et al., Aviat Space Environ. Med. 58, 679 (1987).Google Scholar
  9. 9.
    K. V. Larin, T. Akkin, R. O. Esenaliev, et al., Appl. Opt. 43, 3408 (2004).CrossRefADSGoogle Scholar
  10. 10.
    I. V. Larina, E. F. Carbajal, V. V. Tuchin, et al., Laser Phys. Lett. 5, 476 (2008).CrossRefGoogle Scholar
  11. 11.
    V. V. Tuchin, Optical Clearing of Tissues and Blood (SPIE Press, Bellingham, WA, 2005).Google Scholar
  12. 12.
    M. Ghosn, V. V. Tuchin, and K. V. Larin, Invest. Ophthalmol. Visual Sci. 48, 2726 (2007).CrossRefGoogle Scholar
  13. 13.
    M. G. Ghosn, E. F. Carbajal, N. Befrui, et al., J. Biomed. Opt. 13, 010505(3) (2008).Google Scholar
  14. 14.
    D. Huang, E. A. Swanson, C. P. Lin, et al., Science 254, 1178 (1991).CrossRefADSGoogle Scholar
  15. 15.
    A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, et al., J. Biomed. Opt. 12, 051403 (2007).Google Scholar
  16. 16.
    D. Stifter, Appl. Phys. B: Lasers Opt. 88, 337 (2007).CrossRefGoogle Scholar
  17. 17.
    B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002).Google Scholar
  18. 18.
    K. V. Larin, M. Motamedi, T. V. Ashitkov, and R. O. Esenaliev, Phys. Med. Biol. 48, 1371 (2003).CrossRefGoogle Scholar
  19. 19.
    K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, Diabetes Care 25, 2263 (2002).CrossRefGoogle Scholar
  20. 20.
    K. V. Larin, M. G. Ghosn, S. N. Ivers, et al., Laser Phys. Lett. 4, 312 (2007).CrossRefGoogle Scholar
  21. 21.
    B. Veksler, E. Kobzev, M. Bonesi, and I. Meglinski, Laser Phys. Lett. 5, 236 (2008).CrossRefGoogle Scholar
  22. 22.
    J. Lademann, A. Patzelt, M. Darvin, et al., Laser Phys. Lett. 5, 335 (2008).CrossRefGoogle Scholar
  23. 23.
    R. Huber, M. Wojtkowski, J. G. Fujimoto, et al., Opt. Express 13, 10523 (2005).Google Scholar
  24. 24.
    Y. Verma, K. Divakar Rao, S. K. Mohanty, and P. K. Gupta, Laser Phys. Lett. 4, 686 (2007).CrossRefGoogle Scholar
  25. 25.
    B. J. Vakoc, S. H. Yun, J. F. de Boer, et al., Opt. Express 13, 5483 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • R. K. Manapuram
    • 1
  • V. G. R. Manne
    • 1
  • K. V. Larin
    • 1
    • 2
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of HoustonHoustonUSA
  2. 2.Biomedical Engineering ProgramUniversity of HoustonHoustonUSA
  3. 3.Saratov State UniversitySaratovRussia

Personalised recommendations