Laser Physics

, Volume 18, Issue 6, pp 682–718 | Cite as

Self-organization of ordered nano- and microstructures on the semiconductor surface under the action of laser radiation

Reviews

Abstract

Experimental results on the formation of ordered nano- and microstructures on the surface of semi-conductors under the action of laser pulses with various durations and fluences are interpreted from the unified view point of the theory of the defect-deformation (DD) instability of surface relief. A universal linear dependence of the period of the structures on the thickness of the subsurface layer enriched with mobile point defects and formed due to the laser action and occurrence of two scales of modulation of the surface relief are established and described. The structure symmetry and its evolution with an increasing laser fluence and magnitude of external anisotropic stress are described. Similarities with the formation of nanostructures under ion-beam irradiation and electrochemical etching are revealed and discussed within the framework of the DD instability theory.

PACS numbers

42.62-b 78.68.+m 78.70.-q 64.70.Nd 42.70.Nq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Dal Negro, M. Casanelli, L. Pavesi, et al., Appl. Phys. Lett. 82, 4636 (2003).CrossRefADSGoogle Scholar
  2. 2.
    A. J. Kenyon, Semicond. Sci. Technol. 20, R65 (2005).CrossRefADSGoogle Scholar
  3. 3.
    F. Iacona, D. Pacifici, A. Irrera, et al., Appl. Phys. Lett. 81, 3242 (2002).CrossRefADSGoogle Scholar
  4. 4.
    S. K. Lazaruk, A. A. Leshok, V. A. Labunov, and V. E. Borisenko, Fiz. Tekh. Poluprovodn. 39, 149 (2005) [Semiconductors 39, 136 (2005)].Google Scholar
  5. 5.
    C. Sonnichsen, S. Geier, N. E. Hecker, et al., Appl. Phys. Lett. 77, 2949 (2000).CrossRefADSGoogle Scholar
  6. 6.
    L. Ansheng, A. Rahmani, G. W. Bryant, et al., Opt. Soc. Am. A 18, 704 (2001).CrossRefADSGoogle Scholar
  7. 7.
    N. I. Zheludev, Contemp. Phys. 48, 365 (2002).CrossRefADSGoogle Scholar
  8. 8.
    M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).CrossRefADSGoogle Scholar
  9. 9.
    G. A. Somorjai, Appl. Surf. Sci. 121, 1 (1997).CrossRefADSGoogle Scholar
  10. 10.
    A. Orlov et al., Science 277, 928 (1997).CrossRefGoogle Scholar
  11. 11.
    S. Sun, Science 287, 1989 (2000).CrossRefADSGoogle Scholar
  12. 12.
    V. A. Shchukin and D. Bimberg, Rev. Mod. Phys. 71, 1125 (1999).CrossRefADSGoogle Scholar
  13. 13.
    J. Stangl, V. Holy, and G. Bauer, Rev. Mod. Phys. 76, 725 (2004).CrossRefADSGoogle Scholar
  14. 14.
    K. F. MacDonald, V. A. Fedotov, S. Pochon, et al., Appl. Phys. Lett. 80, 1643 (2002).CrossRefADSGoogle Scholar
  15. 15.
    S. V. Vintsents, V. B. Zaitsev, A. V. Zoteev, et al., Fiz. Tekh. Poluprovodn. 36, 947 (2002) [Semiconductors 36, 841 (2002)].Google Scholar
  16. 16.
    S. V. Vintsents, A. V. Zaitseva, and G. S. Plotnikov, Fiz. Tekh. Poluprovodn. 37, 134 (2003) [Semiconductors 37, 124 (2003)].Google Scholar
  17. 17.
    A. A. Baidullaeva, M. B. Bulakh, A. I. Vlasenko, et al., Fiz. Tekh. Poluprovodn. 38, 29 (2004) [Semiconductors 38, 29 (2004)]; Fiz. Tekh. Poluprovodn. 39, 1064 (2005) [Semiconductors 39, 1028 (2005)].Google Scholar
  18. 18.
    F. Costache, S. Kouteva-Arguirova, and J. Reif, Appl. Phys. A 79 (2004).Google Scholar
  19. 19.
    S. V. Zabotnov, L. A. Golovan’, I. A. Ostapenko, et al., Pis’ma Zh. Eksp. Teor. Fiz. 83, 76 (2006) [JETP Lett. 83, 69 (2006)].Google Scholar
  20. 20.
    S. Fascko, T. Dekorsy, C. Koerdt, et al., Science 285, 1551 (1999).CrossRefGoogle Scholar
  21. 21.
    F. Frost, A. Schnider, and F. Bigl, Phys. Rev. Lett. 85, 4116 (2000).CrossRefADSGoogle Scholar
  22. 22.
    R. Gago, L. Vasquez, R. Cuerno, et al., Appl. Phys. Lett. 78, 3316 (2001).CrossRefADSGoogle Scholar
  23. 23.
    R. Gago, L. Vasquez, R. Cuerno, et al., Nanotechnology 13, 304 (2002).CrossRefADSGoogle Scholar
  24. 24.
    H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys. 37, L1340 (1998).Google Scholar
  25. 25.
    S. Langa, V. Christophersen, J. Carstensen, et al., Phys. Status Solidi A 197, 77 (2003).CrossRefADSGoogle Scholar
  26. 26.
    V. I. Emel’yanov and N. I. Koroteev, Usp. Fiz. Nauk 135, 345 (1981) [Sov. Phys. 24, 864 (1981)].Google Scholar
  27. 27.
    Tsing-Hua Her, R. J. Finlay, C. Wu, et al., Appl. Phys. Lett. 73, 1673 (1998).CrossRefADSGoogle Scholar
  28. 28.
    C. Wu, C. H. Crouch, L. Zhao, et al., Appl. Phys. Lett. 78, 1850 (2001).CrossRefADSGoogle Scholar
  29. 29.
    C. H. Crouch, J. E. Carey, J. M. Warrender, et al., Appl. Phys. Lett. 84, 1850 (2004).CrossRefADSGoogle Scholar
  30. 30.
    D. Ashkenazi et al., J. Laser Micro/Nanoeng. 1(1), 12 (2006).Google Scholar
  31. 31.
    S. I. Dolgaev, S. V. Lavrishev, A. A. Lyalin, et al., Appl. Phys. Lett. 73, 177 (2001).Google Scholar
  32. 32.
    V. I. Emel’yanov, Laser Phys. 2, 389 (1992).Google Scholar
  33. 33.
    V. I. Emel’yanov, Quantum Electron. 29, 561 (1999).CrossRefGoogle Scholar
  34. 34.
    V. I. Emel’yanov, Quantum Electron. 36(6), 489 (2006).CrossRefMathSciNetGoogle Scholar
  35. 35.
    V. I. Emel’yanov, Microelectron. Eng. 69(2–4), 435 (2003).CrossRefGoogle Scholar
  36. 36.
    V. I. Emel’yanov and A. I. Mikaberidze, Phys. Rev. B 72, 235 407 (2005).Google Scholar
  37. 37.
    V. I. Emel’yanov and V. V. Starkov, Poverkhnost’, No. 6, 116 (2006).Google Scholar
  38. 38.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd ed. (Nauka, Moscow, 1987; Pergamon, Oxford, 1986).Google Scholar
  39. 39.
    S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd ed. (Nauka, Moscow, 1966; McGraw-Hill, New York, 1959).MATHGoogle Scholar
  40. 40.
    V. I. Emel’yanov, V. B. Zaitsev, and G. S. Plotnikov, Poverkhnost’, No. 11, 55 (2007).Google Scholar
  41. 41.
    H. G. van Bueren, Imperfections in Crystals, 2nd ed. (North-Holland, Amsterdam, 1960; Inostrannaya Literatura, Moscow, 1962).Google Scholar
  42. 42.
    V. F. Kiselev, S. N. Kozlov, and A. V. Zoteev, Fundamentals of Physics of Solid Surface (Mosk. Gos. Univ., Moscow, 1999), [in Russian].Google Scholar
  43. 43.
    V. I. Emel’yanov, A. Baidullaeva, A. I. Vlasenko, et al., Pis’ma Zh. Teck. Fiz. 32(16), 90 (2006) [Tech. Phys. Lett. 32, 732 (2006)].Google Scholar
  44. 44.
    K. Zanio and Cadmium Telluride, in Semiconductors and Semimetals, Ed. by R. K. Willardson and A. C. Beers (Academic, New York, 1977), Vol. 13, p. 4.Google Scholar
  45. 45.
    A. A. Kovalev, S. P. Rzhavyi, and G. L. Zykov, Fiz. Tekh. Poluprovodn. 39, 1345 (2005) [Semiconductors 39. 1229 (2005)].Google Scholar
  46. 46.
    D. Brewer, J. J. Zinck, and G. L. Olson, Appl. Phys. Lett. 57, 2526 (1990).CrossRefADSGoogle Scholar
  47. 47.
    L. A. Golovan, B. A. Markov, P. K. Kashkarov, et al., Solid State Commun. 108, 707 (1998); Proc. SPIE 2801, 254 (1995).CrossRefADSGoogle Scholar
  48. 48.
    R. O. Bell, Appl. Phys. 19, 313 (1979).CrossRefADSGoogle Scholar
  49. 49.
    V. V. Godlevsky, J. J. Derby, and J. R. Chelikowsky, Phys. Rev. Lett. 1, 4959 (1998).CrossRefADSGoogle Scholar
  50. 50.
    S. Preuss and M. Stuke, Appl. Phys. Lett. 67, 338 (1995).CrossRefADSGoogle Scholar
  51. 51.
    S. Nolte, C. Momma, H. Jacobs, et al., Opt. Soc. Am. B 14, 2716, (1997).CrossRefADSGoogle Scholar
  52. 52.
    W. Kautek and J. Kruger, Mater Sci. Forum 17, 173 (1995).Google Scholar
  53. 53.
    V. I. Emel’yanov and D. V. Babak, Appl. Phys. A 74, 797 (2002).CrossRefADSGoogle Scholar
  54. 54.
    V. I. Emel’yanov and K. M. Karimov, Pis’ma Zh. Tekh. Fiz. 31, 84 (2005) [Tech. Phys. Lett. 31, 258 (2005)].Google Scholar
  55. 55.
    Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology. New series. Group III, Vol. 17: Semiconductors, Subvol. A: Physics of Group IV Elements and III–V Compounds.Google Scholar
  56. 56.
    F. A. Modine and G. E. Jellison, Appl. Phys. Lett. 41, 180 (1982).CrossRefADSGoogle Scholar
  57. 57.
    M. Lannoo and J. Bourgoin, Point Defects in Semiconductors I (Springer, New York, 1981).Google Scholar
  58. 58.
    Acoustic Crystals: Handbook (Nauka, GRFML, Moscow, 1982) [in Russian].Google Scholar
  59. 59.
    P. V. Kazakevich, A. V. Simakin, and G. A. Shafeev, Kvantovaya Elektron. 35(9), 831 (2005).CrossRefGoogle Scholar
  60. 60.
    V. I. Emel’yanov, K. I. Eremin, V. V. Starkov, and E. Yu. Gavrilin, Pis’ma Zh. Tekh. Fiz. 29(6), 19 (2003) [Tech. Phys. Lett. 29, 226 (2003)].Google Scholar
  61. 61.
    R. S. Gvozdover, V. M. Efremenkova, L. B. Shelyakin, and V. E. Yurasova, Radiat. Eff. 27, 237 (1976).CrossRefGoogle Scholar
  62. 62.
    S. Fascko, T. Dekorsy, C. Koerdt, et al., Science 285, 1551 (1999).CrossRefGoogle Scholar
  63. 63.
    F. Frost, A. Schnider, and F. Bigl, Phys. Rev. Lett. 85, 4116 (2000).CrossRefADSGoogle Scholar
  64. 64.
    R. Gago, L. Vasquez, R. Cuerno, et al., Appl. Phys. Lett. 78, 3316 (2001).CrossRefADSGoogle Scholar
  65. 65.
    R. Gago, L. Vasquez, R. Cuerno, et al., Nanotecnology 13, 304 (2002).CrossRefADSGoogle Scholar
  66. 66.
    S. Habenicht, W. Bolse, and K. Lieb, Phys. Rev. 60, R2200 (1999).CrossRefADSGoogle Scholar
  67. 67.
    S. Rusponi, C. Boragno, and U. Valbuso, Phys. Rev. Lett. 78, 2795 (1997).CrossRefADSGoogle Scholar
  68. 68.
    R. M. Bradly and J. M. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988).CrossRefADSGoogle Scholar
  69. 69.
    R. Cuerno and A. L. Barabasi, Phys. Rev. Lett. 74, 4746 (1995).CrossRefADSGoogle Scholar
  70. 70.
    B. Kahng, H. Jeong, and A. L. Barabasi, Appl. Phys. Lett. 78, 805 (2001).CrossRefADSGoogle Scholar
  71. 71.
    S. Habenicht, Phys. Rev. B 63, 125419 (2001).Google Scholar
  72. 72.
    G. J. Carter, Phys. D: Appl. Phys. 34, R1 (2001).CrossRefADSGoogle Scholar
  73. 73.
    V. I. Emel’yanov, Izv. Ross. Akad. Nauk, Ser. Fiz. 7, 779 (2006).Google Scholar
  74. 74.
    V. E. Yurasova, Zh. Tekh. Fiz. 28, 1958 (1958) [Sov. Phys. Tech. Phys. 28, 1800 (1958)].Google Scholar
  75. 75.
    C. Hajdu, F. Paszti, I. Lovas, and M. Fried, Phys. Rev. B 41, 3929 (1990).CrossRefADSGoogle Scholar
  76. 76.
    V. I. Emel’yanov, in Nonlinear Waves: Lectures at the Seventh All-Union School on Nonlinear Waves, Gorky, 1987 (Nauka, Moscow, 1989), p. 198.Google Scholar
  77. 77.
    V. I. Emel’yanov, “Instabilities and Phase Transitions with Formation of Ordered Surface Structures under the Action of External Energy Beams,” in Proceedings of the International Symposium on Selected Topics in Statistical Mechanics, Joint Institute for Nuclear Research, Dubna, USSR, 1988, D17-88-95, p. 119.Google Scholar
  78. 78.
    D. Walgraef, Phys. Rev. B 56, 15 361 (1997).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Moscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations