Laser Physics

, Volume 18, Issue 3, pp 353–356 | Cite as

73-nm tuning of a double-clad Yb3+-doped fiber laser based on a hybrid array

  • J. A. Alvarez-Chavez
  • A. Martínez-Rios
  • I. Torres-Gomez
  • A. Gonzalez-Garcia
  • H. L. Offerhaus
Fiber Laser Technology

Abstract

We report on a wide wavelength tuning in a double-clad ytterbium-doped fiber laser. The laser cavity consists of an array of broadband high-reflection fiber Bragg gratings and a bulk grating as the output coupler and wavelength selection element. The proposed fiber laser configuration combines a low intracavity loss of the fiber Bragg grating mirrors with a wide wavelength tuning of the bulk gratings. We demonstrate a >70-nm wavelength tuning range, limited only by the available fiber Bragg gratings.

PACS numbers

42.55.Wd 42.60.By 42.60.Fc 42.81.Wg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Nilsson, W. A. Clarkson, R. Selvas, et al., Opt. Fiber Technol. 10(1), 5 (2004).CrossRefADSGoogle Scholar
  2. 2.
    A. S. Kurkov, “Oscillation Spectral Range of Yb-Doped Fiber Lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).CrossRefADSGoogle Scholar
  3. 3.
    H. M. Pask et al., “Ytterbium-Doped Silica Fiber Lasers: Versatile Sources for the 1.0–1.2 um Region,” IEEE J. Sel. Top. Quantum Electron. 1(1), 2 (1995).CrossRefGoogle Scholar
  4. 4.
    A. S. Kurkov, V. M. Paramonov, and O. I. Medvedkov, “Ytterbium Fiber Laser Emitting at 1160 nm”, Laser Phys. Lett. 3, 503–506 (2006).CrossRefADSGoogle Scholar
  5. 5.
    Y. Jeong, J.K. Sahu, D.N. Payne, and J. Nilsson, “Ytterbium-Doped Large-Core Fiber Laser with 1.36 kW Continuous-Wave Output Power,” Opt. Express 12, 6088 (2004).CrossRefADSGoogle Scholar
  6. 6.
    A. S. Kurkov, V. V. Dvoyrin, V. M. Paramonov, et al., “All-Fiber Pulsed Raman Source Based on Yb:Bi Fiber Laser”, Laser Phys. Lett. 4, 449 (2007).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Kaminskii et al., “New Results on Characterization of Highly Transparent C-Modification Lu2O3 Nanocrystalline Ceramics: Room-Temperature Tunable CW Laser Action of Yb3+ Ions under LD-Pumping and the Propagation Kinetics of Non-Equilibrium Acoustic Phonons,” Laser Phys. Lett. 3(8), 375–379 (2006).CrossRefADSGoogle Scholar
  8. 8.
    K. Takaichi et al., “New Data on Investigation of Novel Laser Ceramic on the Base of Cubic Scandium Sesquioxide: Two-Band Tunable CW Generation of Yb3+: Sc2O3 with Laser-Diode Pumping and the Dispersion of Refractive Index in the Visible and Near-IR of Undoped Sc2O3,” Laser Phys. Lett. 4, 507–510 (2007).CrossRefADSGoogle Scholar
  9. 9.
    S. W. Harun, S. D. Emami, F. A. Rahman, et al., “Multiwavelength Brillouin/Erbium-Ytterbium Fiber Laser”, Laser Phys. Lett. 4, 601–603 (2007).CrossRefADSGoogle Scholar
  10. 10.
    V. A. Akulov, D. M. Afanasiev, S. A. Babin, et al., “Frequency Tuning and Doubling in Yb-Doped Fiber Lasers,” Laser Phys. Lett. 17(2), 124–129 (2007).Google Scholar
  11. 11.
    E. M. Dianov, I. A. Bufetov, A. A. Frolov, et al., “Catastrophic Destruction of Optical Fibers of Various Composition Caused by Laser Radiation,” Quantum Electron. 32, 476–478 (2002).CrossRefADSGoogle Scholar
  12. 12.
    Q. Liu, M. Gong, H. Wu, et al., “Electro-Optic Q-Switched Yb:YAG Slab Laser,” Laser Phys. Lett. 3, 249–251 (2006).CrossRefADSGoogle Scholar
  13. 13.
    Q. Liu, F. Lu, M. Gong, et al., “15 W Output Power Diode-Pumped Solid-State Lasers at 515 nm,” Laser Phys. Lett. 4, 30–32 (2007).CrossRefADSGoogle Scholar
  14. 14.
    J. Dong et al., “Stable Laser-Diode Pumped Microchip Sub-Nanosecond Cr,Yb:YAG Self-Q-Switched Laser,” Laser Phys. Lett. 2, 387–391 (2005).CrossRefADSGoogle Scholar
  15. 15.
    J. Dong, and K. Ueda, “Temperature-Tuning Yb:YAG Microchip Lasers,” Laser Phys. Lett. 2(9), 429–436 (2005).CrossRefADSGoogle Scholar
  16. 16.
    OFS web site: www.ofsoptics.com.
  17. 17.
    I. Torres-Gomez, A. Martínez-Rios, R. Selvas-Aguilar, et al., “Multi-Wavelength-Switchable Double-Clad Yb[3+]-Doped Fiber Laser Based on Reflectivity Control of Fiber Bragg Gratings by Induced Bend Loss,” Opt. Rev. 12(2), 65–68 (2005).CrossRefGoogle Scholar
  18. 18.
    G. Anzueto-Sanchez, A. Martínez-Rios, I. Torres-Gomez, et al., “Tunable Ytterbium-Doped Fiber Laser Based on a Mechanically Induced Long Period Holey Fiber Grating,” Opt. Rev. 14(2), 75–77 (2007).CrossRefGoogle Scholar
  19. 19.
    M. L. Aslund and S. D. Jackson, “Long-Period Grating as Wavelength Specific Loss Elements in Fiber Lasers,” Electron. Lett. 43, 614–615 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • J. A. Alvarez-Chavez
    • 1
  • A. Martínez-Rios
    • 2
  • I. Torres-Gomez
    • 2
  • A. Gonzalez-Garcia
    • 2
  • H. L. Offerhaus
    • 3
  1. 1.Centro de Investigación e Innovación TecnológicaCerrada CECATI S/N Col. Santa CatarinaAzcapotzalco D.F.México
  2. 2.Centro de Investigaciones en ÓpticaLeón, GuanajuatoMéxico
  3. 3.Optical Techniques Group, Department of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations