Laser Physics

, Volume 18, Issue 3, pp 270–276 | Cite as

Linear and nonlinear properties of multicomponent glass photonic crystal fibers

  • D. LorencEmail author
  • I. Bugar
  • M. Aranyosiova
  • R. Buczynski
  • D. Pysz
  • D. Velic
  • D. Chorvat
Nonlinear Optics and Spectroscopy


Processes resulting in supercontinuum generation in multicomponent glass photonic crystal fibers are reviewed in this paper. Multicomponent glass photonic crystal fibers are shown to have a broad transmission range, extending up to 4.5 μm in selected cases. Pumping with a 1240-nm femtosecond pulse at very low sub-nJ energies resulted in soliton formation and dispersive wave generation in a multicomponent PCF sample having a double-core square-lattice structure. These processes were described using a phase-matching model derived from the simulated dispersive properties of the fiber. Third-harmonic generation was observed in the radiation modes of a different cobweb sample with the simultaneous formation of a soliton in the NIR.

PACS numbers

42.65.Ky 42.65.Wi 42.81.Qb 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).CrossRefADSGoogle Scholar
  2. 2.
    T. Monro, Y. West, D. Hevak, et al., Electron. Lett. 36, 1998 (2000).CrossRefGoogle Scholar
  3. 3.
    G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 2001; Mir, Moscow, 1996).Google Scholar
  4. 4.
    S. Coen, A. H. L. Chau, R. Leonhardt, et al., J. Opt. Soc. Am. B 19, 753 (2002).CrossRefADSGoogle Scholar
  5. 5.
    F. G. Omenetto, A. J. Taylor, M. D. Moores, et al., Opt. Lett. 26, 1158 (2001).CrossRefADSGoogle Scholar
  6. 6.
    L. Tartara, I. Christiani, V. Degiorgo, et al., Opt. Commun. 215, 191 (2003).CrossRefADSGoogle Scholar
  7. 7.
    J. Herrmann, U. Griebner, N. Zhavoronkov, et al., Phys. Rev. Lett. 88, 173901 (2002).Google Scholar
  8. 8.
    D. T. Reid, I. G. Cormack, W. J. Wadsworth, et al., J. Mod. Opt. 49, 757 (2002).CrossRefADSGoogle Scholar
  9. 9.
    J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible Continuum Generation in Air-Silica Microstructure Optical Fiber with Anomalous Dispersion at 800 nm,” Opt. Lett. 25, 25 (2000).CrossRefADSGoogle Scholar
  10. 10.
    M. J. Weber, Handbook of Optical Materials (CRC, Boca Raton, FL, 2003).Google Scholar
  11. 11.
    R. Buczynski, D. Lorenc, I. Bugar, et al., Proc. SPIE 6608, 660 805 (2007).Google Scholar
  12. 12.
    A. V. Husakou and J. Herrmann, Phys. Rev. Lett. 87, 203 901 (2001).Google Scholar
  13. 13.
    N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).CrossRefADSGoogle Scholar
  14. 14.
    E. Silvestre, M. V. Andres, and P. Andres, J. Lightwave Technol. 16, 923 (1998).CrossRefADSGoogle Scholar
  15. 15.
    I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgo, Opt. Express 12, 124 (2003).CrossRefADSGoogle Scholar
  16. 16.
    S. O. Konorov, A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, Appl. Phys. B 81, 219 (2005).CrossRefADSGoogle Scholar
  17. 17.
    D. Ouzounov, D. Homoelle, W. Zipfel, et al., Opt. Commun. 192, 219 (2001).CrossRefADSGoogle Scholar
  18. 18.
    F. G. Omenetto, A. Efimov, J. Taylor, et al., Opt. Express 11, 61 (2003).CrossRefADSGoogle Scholar
  19. 19.
    A. Efimov, A. J. Taylor, F. G. Omenetto, et al., Opt. Express 11, 910 (2003).CrossRefADSGoogle Scholar
  20. 20.
    A. Efimov, A. J. Taylor, F. G. Omenetto, et al., Opt. Express 11, 2567 (2003).CrossRefADSGoogle Scholar
  21. 21.
    A. N. Naumov, A. B. Fedotov, A. M. Zheltikov, et al., J. Opt. Soc. Am. B 19, 2183 (2002).CrossRefADSGoogle Scholar
  22. 22.
    A. A. Ivanov, D. Lorenc, I. Bugar, et al., Phys. Rev. E 73, 016610 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • D. Lorenc
    • 1
    Email author
  • I. Bugar
    • 1
  • M. Aranyosiova
    • 1
    • 3
  • R. Buczynski
    • 2
  • D. Pysz
    • 4
  • D. Velic
    • 1
    • 3
  • D. Chorvat
    • 1
  1. 1.International Laser CenterBratislavaSlovakia
  2. 2.Information Optics Group, Faculty of PhysicsWarsaw UniversityWarsawPoland
  3. 3.Department of Physical and Theoretical Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  4. 4.Glass Laboratory Institute of Electronic Materials TechnologyWarsawPoland

Personalised recommendations