Laser Physics

, Volume 18, Issue 2, pp 87–103 | Cite as

Frequency comb generation and carrier-envelope phase control in femtosecond optical parametric oscillators

Reviews

Abstract

We describe progress in the measurement and control of the carrier-envelope phase-slip frequencies of pulses generated by a femtosecond optical parametric oscillator. Example applications of such control are presented and include the generation of a frequency comb spanning nearly three optical octaves, and the creation of a train of 30-fs pulses via coherent pulse synthesis. Future prospects for frequency combs based on femtosecond optical parametric oscillators are discussed.

PACS numbers

42.65.Re 42.65.Yj 42.72.-g 42.72.Ai 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly Tunable High Repetition Rate Femtosecond Optical Parametric Oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    D. T. Reid, Z. Penman, M. Ebrahimzadeh, et al., “Broadly Tunable Infrared Femtosecond Optical Parametric Oscillator Based on Periodically Poled RbTiOAsO4,” Opt. Lett. 22, 1397–1399 (1997).ADSCrossRefGoogle Scholar
  3. 3.
    K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “Broadly Tunable Mid-Infrared Femtosecond Optical Parametric Oscillator Using All-Solid-State-Pumped Periodically Poled Lithium Niobate,” Opt. Lett. 22, 1458–1460 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    C. McGowan, D. T. Reid, Z. E. Penman, et al., “Femtosecond Optical Parametric Oscillator Based on Periodically Poled Lithium Niobate,” J. Opt. Soc. Am. B 15, 694–701 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    G. T. Kennedy, D. T. Reid, A. Miller, et al., “Near-to Mid-Infrared Picosecond Optical Parametric Oscillator Based on Periodically Poled RbTiOAsO4,” Opt. Lett. 23, 503–505 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    P. Loza-Alvarez, D. T. Reid, M. Ebrahimzadeh, et al., “Periodically Poled RbTiOAsO4 Femtosecond Optical Parametric Oscillator Tunable from 1.38 to 1.58 μm,” Appl. Phys. B: Lasers Opt. 68, 177–180 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    D. T. Reid, G. T. Kennedy, A. Miller, et al., “Widely Tunable, Near-to Mid-Infrared Femtosecond and Picosecond Optical Parametric Oscillators Using Periodically Poled LiNbO3 and RbTiOAsO4,” IEEE J. Sel. Top. Quantum Electron. 4, 238–248 (1998).CrossRefGoogle Scholar
  8. 8.
    L. E. Myers, R. C. Eckardt, M. M. Fejer, et al., “Quasi-Phase-Matched Optical Parametric Oscillators in Bulk Periodically Poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Watson, M. V. O’Connor, P. S. Lloyd, et al., “Extended Operation of Synchronously Pumped Optical Parametric Oscillators to Longer Idler Wavelengths,” Opt. Lett. 27, 2106–2108 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    J. A. Armstrong, N. Bloembergen, J. Ducing, and P. S. Pershan, “Interactions between Light Waves in a Nonlinear Dielectric,” Phys. Rev. 127, 1918–1939 (1962).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Kobayashi and K. Torizuka, “Measurement of the Optical Phase Relation among Subharmonic Pulses in a Femtosecond Optical Parametric Oscillator,” Opt. Lett. 25, 856–858 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Watson, M. V. O’Connor, D. P. Shepherd, and D. C. Hanna, “Synchronously Pumped CdSe Optical Parametric Oscillator in the 9–10 μm Region,” Opt. Lett. 25, 1957–1959 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    J. M. Dudley, D. T. Reid, M. Ebrahimzadeh, and W. Sibbbett, “Characteristics of a Noncritically Phasematched Tisapphire Pumped Femtosecond Optical Parametric Oscillator,” Opt. Commun. 104, 419–430 (1994).ADSCrossRefGoogle Scholar
  14. 14.
    Y. R. Shen, The Principles of Nonlinear Optics (Wiley InterSci., New York, 1984).Google Scholar
  15. 15.
    T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly Single-Mode Photonic Crystal Fiber,” Opt. Lett. 22, 961–963 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible Continuum Generation in Air-Silica Microstructure Optical Fibers with Anomalous Dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    D. J. Jones, S. A. Diddams, J. K. Ranka, et al., “Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis,” Science 288, 635–639 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    J. H. Sun, B. J. S. Gale, and D. T. Reid, “Testing the Parametric Energy Conservation Law in a Femtosecond Optical Parametric Oscillator,” Opt. Express 15, 4378–4384 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    J. H. Sun, B. J. S. Gale, and D. T. Reid, “Composite Frequency Comb Spanning 0.4–2.4 μm from a Phase-Controlled Femtosecond Ti:Sapphire Laser and Synchronously Pumped Optical Parametric Oscillator,” Opt. Lett. 32, 1414–1416 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    M. Prevedelli, T. Freegarde, and T. W. Hansch, “Phase-Locking of Grating-Tuned Diode-Lasers,” Appl. Phys. B: Lasers Opt. 60, S241–S248 (1995).Google Scholar
  21. 21.
    J. H. Sun, B. J. S. Gale, and D. T. Reid. “Coherent Synthesis Using Carrier-Envelope Phase-Controlled Pulses from a Dual-Color Femtosecond Optical Parametric Oscillator,” Opt. Lett. 32, 1396–1398 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    J. H. Sun, B. J. S. Gale, and D. T. Reid, “Dual-Color Operation of a Femtosecond Optical Parametric Oscillator Exhibiting Stable Relative Carrier-Envelope Phase-Slip Frequencies,” Opt. Lett. 31, 2021–2023 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    F. M. Mitschke and L. F. Mollenauer, “Discovery of the Soliton Self-Frequency Shift,” Opt. Lett. 11, 659–661 (1986).ADSCrossRefGoogle Scholar
  24. 24.
    X. Liu, C. Xu, W. H. Knox, et al., “Soliton Self-Frequency Shift in a Short Tapered Air-Silica Microstructure Fiber,” Opt. Lett. 26, 358–360 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    D. T. Reid, I. G. Cormack, W. J. Wadsworth, et al., “Soliton Self-Frequency Shift Effects in Photonic Crystal Fibre,” J. Mod. Opt. 49, 757–767 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    I. G. Cormack, D. T. Reid, W. J. Wadsworth, et al., “Observation of Soliton Self-Frequency Shift in Photonic Crystal Fibre,” Electron. Lett. 38, 167–169 (2002).CrossRefGoogle Scholar
  27. 27.
    K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-Infrared Absorption Spectroscopy Across a 14.4 THz Spectral Range Using a Broadband Femtosecond Optical Parametric Oscillator,” Appl. Phys. Lett. 85, 3366–3368 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, “Mid-Infrared Absorption Spectroscopy of Methane Using a Broadband Femtosecond Optical Parametric Oscillator Based on Aperiodically Poled Lithium Niobate,” J. Opt. A: Pure Appl. Opt. 7, S408–S414 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    L. Kornaszewski, N. Gayraud, J. M. Stone, et al., “Mid-Infrared Methane Detection in a Photonic Bandgap Fiber Using a Broadband Optical Parametric Oscillator,” Opt. Express 15, 11219–11224 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, et al., “High-Repetition-Rate Ultrashort-Pulse Optical Parametric Oscillator Continuously Tunable from 2.8 to 6.8 μm,” Opt. Lett. 24, 1523–1525 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    R. Dandliker, R. Thalmann, and D. Prongue, “2-Wavelength Laser Interferometry Using Superheterodyne Detection,” Opt. Lett. 13, 339–341 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.School of Engineering and Physical SciencesHeriot-Watt UniversityRiccartonUK

Personalised recommendations