Laser Physics

, Volume 17, Issue 7, pp 993–1000 | Cite as

Experiments of quantum nonlocality with polarization-momentum entangled photon pairs

  • G. Vallone
  • P. Mataloni
  • F. De Martini
  • M. Barbieri
Quantum Optics, Laser Physics, and Spectroscopy
  • 27 Downloads

Abstract

We present the results of some experimental tests of quantum nonlocality performed by two-photon states, entangled both in polarization and momentum, namely hyperentangled states and two-photon four-qubit linear cluster states. These states, which double the number of available qubits with respect to the standard two-photon entangled states, are engineered by a simple experimental method, which adopts linear optics and a single type I nonlinear crystal. The tests of local realism performed with these states represent a generalization of the Greenberger, Home, and Zeilinger (GHZ) theorem to the case of two entangled particles.

PACS numbers

42.50.Dv 42.50.Xa 42.50.-p 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).MATHCrossRefADSGoogle Scholar
  2. 2.
    J. S. Bell, Physics 1, 195 (1964).Google Scholar
  3. 3.
    A. Ekert, Phys. Rev. Lett. 67, 661 (1991).MATHCrossRefADSGoogle Scholar
  4. 4.
    A. Cabello, Phys. Rev. Lett. 87, 010403 (2001); Z. B. Chen, J. W. Pan, Y. D. Zhang, et al., Phys. Rev. Lett. 90, 160408 (2003).Google Scholar
  5. 5.
    H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 910 (2001); H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 5188 (2001).CrossRefADSGoogle Scholar
  6. 6.
    V. Scarani, A. Acín, E. Schenk, and M. Aspelmeyer, Phys. Rev. A 71, 042325 (2005).Google Scholar
  7. 7.
    A. Cabello, Phys. Rev. Lett. 95, 210401 (2005).Google Scholar
  8. 8.
    C. Cinelli et al., Phys. Rev. Lett. 95, 240405 (2005).Google Scholar
  9. 9.
    P. Heywood and M. G. L. Redhead, Found. Phys. 13, 481 (1983).CrossRefGoogle Scholar
  10. 10.
    P. H. Eberhard, and P. Rosselet, Found. Phys. 25, 91 (1995).CrossRefGoogle Scholar
  11. 11.
    C. Cinelli, G. Di Nepi, F. De Martini, et al., Phys. Rev. A 70, 022321 (2004).Google Scholar
  12. 12.
    M. Barbieri et al., Phys. Rev. Lett. 91, 227901 (2003); M. Barbieri et al., Phys. Rev. Lett. 92, 177901 (2004).Google Scholar
  13. 13.
    M. Barbieri et al., Phys. Rev. A 72, 052110 (2005).Google Scholar
  14. 14.
    M. Barbieri, F. De Martini, P. Mataloni, et al., Phys. Rev. Lett. 97, 140407 (2006).Google Scholar
  15. 15.
    T. Yang, Q. Zhang, J. Zhang, et al., Phys. Rev. Lett. 95, 240406 (2005).Google Scholar
  16. 16.
    M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Phys. Rev. A 75, 042417 (2007).Google Scholar
  17. 17.
    A. Cabello, Phys. Rev. Lett. 97, 140406 (2006).Google Scholar
  18. 18.
    P. Walther et al., Nature 434, 1696 (2005).CrossRefGoogle Scholar
  19. 19.
    P. Walther et al., Phys. Rev. Lett. 95, 020403 (2005).Google Scholar
  20. 20.
    Kiesel et al., Phys. Rev. Lett. 95, 210502 (2005).Google Scholar
  21. 21.
    G. Vallone, E. Pomarico, P. Mataloni, F. De. Martini, V. Berardi, Phys. Rev. Lett. 98, 180502 (2007).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • G. Vallone
    • 1
  • P. Mataloni
    • 1
  • F. De Martini
    • 1
  • M. Barbieri
    • 2
  1. 1.Dipartimento di Fisica dell’Universitá “La Sapienza” and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della MateriaRomaItaly
  2. 2.Department of PhysicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations