Advertisement

Laser Physics

, Volume 17, Issue 7, pp 912–926 | Cite as

Quantum theory of radiation of an excited atom placed near a microresonator containing a single-photon wavepacket: Photon correlation properties

  • V. V. Klimov
  • V. S. Letokhov
  • M. Ducloy
Quantum Optics, Laser Physics, and Spectroscopy

Abstract

The strong resonance interaction of a two-level atom with the continuum of quantized electromagnetic modes falling within the contour of a resonance mode of a dielectric microsphere is considered within the framework of quantum electrodynamics. Analytical solutions are derived. As an initial condition, we consider the case when, at time t = 0, the atom is excited and the resonance modes of the microsphere contain a single-photon wavepacket. It is shown that the properties of the emitted photon pair depend crucially on space-time properties of the photon wavepacket contained in the resonator. When the mean square of the electric field of the photon wavepacket at the initial instant of time at the atom position is close to the vacuum value, the radiation of an atom is similar to a spontaneous one and the emitted photon pair has no correlations. On the contrary, if the mean square of the electric field of the photon wavepacket at the initial instant of time at the atom position is substantially greater than the vacuum value, the radiation of an atom has a stimulated nature and the emitted photon pair has very complicated strong correlations. The relationship between the results obtained and the predictions of the dressed states theory are briefly discussed. The results obtained are of a general character and can be applied to the description of the resonant interaction of an excited atom and an excited resonator of an arbitrary shape.

PACS numbers

32.50.+d 42.50.Pq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Klyshko, “The Nonclassical Light,” Phys. Usp. 39, 573 (1996).CrossRefADSGoogle Scholar
  2. 2.
    M. Lipeles, R. Novick, and N. Tolk, “Direct Detection of Two-Photon Emission from the Metastable State of Singly Ionized Helium,” Phys. Rev. Lett. 15, 690 (1965).CrossRefADSGoogle Scholar
  3. 3.
    R. D. Kaul, J. Opt. Soc. Am. 56, 1262 (1966).CrossRefGoogle Scholar
  4. 4.
    C. A. Kocher and E. D. Commins, “Polarization Correlation of Photons Emitted in an Atomic Cascade,” Phys. Rev. Lett. 18, 575 (1967).CrossRefADSGoogle Scholar
  5. 5.
    S. A. Akhmanov et al., “Quantum Noise in Parametric Application of Light,” JETP Lett. 6, 85 (1967).ADSGoogle Scholar
  6. 6.
    S. E. Harris, M. K. Oshman, and R. Byer, “Observation of Tunable Optical Parametric Fluorescence,” Phys. Rev. Lett. 18, 732 (1967).CrossRefADSGoogle Scholar
  7. 7.
    D. Magde and H. Mahr, “Study in Ammonium Dihydrogen Phosphate of Spontaneous Parametric Interaction Tunable from 4400 to 16 000 Å,” Phys. Rev. Lett. 18, 905 (1967).CrossRefADSGoogle Scholar
  8. 8.
    S. Machida, Y. Yamamoto, and Y. Itaya, “Observation of Amplitude Squeezing in a Constant-Current-Driven Semiconductor Laser,” Phys. Rev. Lett. 58, 1000 (1987).CrossRefADSGoogle Scholar
  9. 9.
    W. H. Richardson and R. M. Shelby, “Nonclassical Light from a Semiconductor Laser Operating at 4 K,” Phys. Rev. Lett. 64, 400 (1990).CrossRefADSGoogle Scholar
  10. 10.
    H. Wang, M. J. Freeman, and D. G. Steel, “Squeezed Light from Injection-Locked Quantum Well Lasers,” Phys. Rev. Lett. 71, 3951 (1993).CrossRefADSGoogle Scholar
  11. 11.
    A. M. Fox et al., “Squeezed Light Generation in Semiconductors,” Phys. Rev. Lett. 74, 1728 (1995).CrossRefADSGoogle Scholar
  12. 12.
    S. F. Pereira et al., “Generation of Squeezed Light by Intracavity Frequency Doubling,” Phys. Rev. A 38, 4931 (1998).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    R. Paschotta et al., “Bright Squeezed Light from a Singly Resonant Frequency Doubler,” Phys. Rev. Lett. 72, 3807 (1994).CrossRefADSGoogle Scholar
  14. 14.
    T. C. Ralph et al., “Squeezed Light from Second Harmonic Generation: Experiment versus Theory,” Opt. Lett. 20, 1316 (1995).ADSGoogle Scholar
  15. 15.
    Cavity Quantum Electrodynamics, Ed. by P. Berman (Academic, New York, 1994).Google Scholar
  16. 16.
    P. N. Prasad, Nanophotonics (Wiley-Interscience, New York, 2004).Google Scholar
  17. 17.
    V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-Factor and Nonlinear Properties of Optical Whispering-Gallery Modes,” Phys. Lett. A 137, 393 (1989).CrossRefADSGoogle Scholar
  18. 18.
    L. Collot, V. Lefevre, M. Brune, et al., “Very Higher Whispering-Gallery Mode Resonances Observed in Fused Silica Microspheres,” Eur. Phys. Lett. 23, 327 (1993).ADSGoogle Scholar
  19. 19.
    M. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “On the Ultimate Q of Optical Microsphere. Resonators,” Opt. Lett. 21, 453 (1996).ADSGoogle Scholar
  20. 20.
    V. V. Klimov and V. S. Letokhov, “Resonance Fluorescence in an Atom Plusdielectric Microsphere System Excited by a Single Photon,” JETP Lett. 68, 124–130 (1998).CrossRefADSGoogle Scholar
  21. 21.
    V. V. Klimov, M. Ducloy, and V. S. Letokhov, “Strong Interaction of Two-Level Atom with Whispering Gallery Modes of Dielectric Microsphere: Quantum Consideration,” Phys. Rev. A. 59, 2996 (1999).CrossRefADSGoogle Scholar
  22. 22.
    A. S. Davydov, Quantum Mechanics (Nauka, Moscow, 1973; Pergamon, Oxford, 1976).Google Scholar
  23. 23.
    S. C. Ching, H. M. Lai, and K. J. Young, “Dielectric Microspheres as Optical Cavities: Einstein A and B Coefficients and Level Shift,” Opt. Soc. Am. B 4, 1995 (1987); Opt. Soc. Am. B 4, 2004 (1987).ADSGoogle Scholar
  24. 24.
    D. P. Craig and T. Thirunamachandran, Molecular Quantum Electrodynamics (Academic, New York, 1984).Google Scholar
  25. 25.
    G. S. Agarwal., “Spectroscopy of Strongly Coupled Atom-Cavity Systems: a Topical Review,” J. Mod. Opt. 45, 449–470 (1998).ADSGoogle Scholar
  26. 26.
    M. Löffler, G. M. Meyer, and H. Walther, “Spectral Properties of the One-Atom Laser,” Phys. Rev. A 55, 3923–3930 (1997).CrossRefADSGoogle Scholar
  27. 27.
    E. T. Jaynes and F. W. Cummings, “Comparison of Quantum and Semiclassical Radiation Theory with Application to the Beam Maser,” Proc. IEEE 51, 89 (1963).CrossRefGoogle Scholar
  28. 28.
    M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • V. V. Klimov
    • 1
  • V. S. Letokhov
    • 2
  • M. Ducloy
    • 3
  1. 1.Lebedev Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Institute of SpectroscopyRussian Academy of SciencesTroitsk, Moscow oblastRussia
  3. 3.Laboratoire de Physique des Lasers, UMR CNRS 7538 Institut GaliléeUniversité Paris-NordVilletaneuseFrance

Personalised recommendations