Advertisement

Laser Physics

, Volume 17, Issue 5, pp 755–759 | Cite as

Triggering of nuclear isomers via decay of autoionization states in electron shells (NEET)

  • I. N. Izosimov
Quantum Nucleonics and Isomers

Abstract

Nuclear excitation by an electron transition (NEET) may be used for triggering the decay of nuclear isomers only when there are compensations between energies (ΔE) and multipolarities (ΔL) of the nuclear transition and the transition in an electron shell. It is shown that using the autoionization states (AS) allows one to compensate for the ΔE and ΔL differences. Laser radiation may be used for the excitation of AS with energies up to 10–15 eV and 229m Th (3.5 eV) nuclear isomer excitation by NEET via AS decay. Ion beams, electron beams, and X rays may be used for the excitation of the trigger nuclear levels with energies up to 150 keV by NEET via AS and for the triggering of the nuclear isomer decay. For excitation of AS with the energies up to 150 keV, two or more hole states in deep inner electron shells must be excited. The cross section for such two-hole state excitation in electron shells by ion beams may be sufficiently high. The possibilities of NEET via AS for the triggering of nuclear isomer decay are discussed.

PACS numbers

23.20.-g 32.80.Dz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Morita, Prog. Theor. Phys. 49, 1574 (1973).CrossRefADSGoogle Scholar
  2. 2.
    D. F. Zaretsky and F. F. Karpeshin, Sov. J. Nucl. Phys. 29, 151 (1979).Google Scholar
  3. 3.
    F. F. Karpeshin, in Proceedings of the V International Workshop Applications of Lasers in Atomic Nuclei Research, Poland, 2001, JINR E15-2002-84, p. 176 (JINR, Dubna, 2002).Google Scholar
  4. 4.
    I. N. Izosimov, in Proceedings of the 7th AFOSR Workshop “Isomers and Quantum Nucleonics,” Dubna, Russia, 2005, JINR E15,18-2006-24, p. 115 (JINR, Dubna, 2006).Google Scholar
  5. 5.
    V. S. Letokhov, Laser Photoionozation Spectroscopy (Academic, London, 1987).Google Scholar
  6. 6.
    V. M. Galitsky, B. M. Karnakov, and V. I. Kogan, Problems in Quantum Mechanics, 2nd ed. (Nauka, Moscow, 1992) [in Russian].Google Scholar
  7. 7.
    P. Peuser et al., Appl. Phys. B 38, 249 (1985)).CrossRefADSGoogle Scholar
  8. 8.
    B. A. Bushaw, et al., Spectrochim. Acta B 58, 1083 (2003).CrossRefGoogle Scholar
  9. 9.
    R. G. Burke et al., Phys. Rev. C 42, R499 (1990).CrossRefADSGoogle Scholar
  10. 10.
    R. G. Helmer and C. W. Reich, Phys. Rev. C 49, 1845 (1994).CrossRefADSGoogle Scholar
  11. 11.
    R. B. Firestone and C. M. Baglin, Table of Isotopes (Update Eight Edition on CD-ROM) (1998).Google Scholar
  12. 12.
    E. Browne, et al., Phys. Rev. C 64, 014311 (2001).Google Scholar
  13. 13.
    F. F. Karpeshin, et al., in Proceedings of the International Conference on Nuclear Shapes and Nuclear Structure at Low Excitation Energies, ANTIBES, France, 1994, p. 181.Google Scholar
  14. 14.
    C. B. Collins and J. J. Carroll, Hyperfine Interact. 107, 3 (1997).CrossRefADSGoogle Scholar
  15. 15.
    C. B. Collins et al., Phys. Rev. Lett. 82, 695 (1999).CrossRefADSGoogle Scholar
  16. 16.
    J. J. Carroll et al., Hyperfine Interact. 135, 3 (2001).CrossRefADSGoogle Scholar
  17. 17.
    J. J. Carroll et al., Hyperfine Interact. 143, 37 (2002).CrossRefADSGoogle Scholar
  18. 18.
    C. B. Collins et al., Phys. Rev. C 61, 054305 (2000).Google Scholar
  19. 19.
    C. B. Collins et al., Laser Phys. 11, 1 (2001).ADSGoogle Scholar
  20. 20.
    C. B. Collins et al., Phys. At. Nucl. 63, 2067 (2000).CrossRefGoogle Scholar
  21. 21.
    C. B. Collins et al., J. Phys. IV 11, 437 (2001).Google Scholar
  22. 22.
    S. A. Karamian and J. J. Carroll, in Proceedings of the 7th AFOSR Workshop “Isomers and Quantum Nucleonics,” Dubna, Russia, 2005, JINR E15,18-2006-24 (JINR, Dubna, 2006), p. 85.Google Scholar
  23. 23.
    S. A. Karamian et al., in Proceedings of the 7th AFOSR Workshop “Isomers and Quantum Nucleonics”, Dubna, Russia, 2005, JINR E15,18-2006-24 (JINR, Dubna, 2006), p. 68.Google Scholar
  24. 24.
    S. A. Karamian and J. Adam, Czech. J. Phys. B 53, 381 (2003).Google Scholar
  25. 25.
    A. Muller and E. Salzborn, Phys. Lett. A 62, 391 (1977).CrossRefADSGoogle Scholar
  26. 26.
    A. Niehaus, J. Phys. B: At. Mol. Phys. 19, 2925 (1986).CrossRefADSGoogle Scholar
  27. 27.
    H. Ryufuku, K. Sasaki, and T. Watanabe, Phys. Rev. A 21, 745 (1980).CrossRefADSGoogle Scholar
  28. 28.
    A. Barny et al., Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985).CrossRefADSGoogle Scholar
  29. 29.
    K. Ishii, A. Itoh, and K. Okuno, Phys. Rev. A 70, 042715 (2004).Google Scholar
  30. 30.
    K. Otozai, R. Arakawa, and T. Saito, Nucl. Phys. A 297, 97 (1978).CrossRefADSGoogle Scholar
  31. 31.
    T. Saito, A. Shinohara, and K. Otazai, Phys. Lett. B 92, 293 (1980).CrossRefADSGoogle Scholar
  32. 32.
    S. Kishimoto et al., Phys. Rev. Lett. 85, 1831 (2000).CrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • I. N. Izosimov
    • 1
  1. 1.Flerov Laboratory of Nuclear ReactionJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations