Laser Physics

, 17:695

Can light signals travel faster than c in nontrivial vacua in flat space-time? Relativistic causality II

  • H. Fearn
Quantum Information

Abstract

In this paper, we show that the Scharnhorst effect (vacuum with boundaries or a Casimir-type vacuum) cannot be used to generate signals showing measurable faster-than-c speeds. Furthermore, we aim to show that the Scharnhorst effect would violate special relativity, by allowing for a variable speed of light in a vacuum, unless one can specify a small invariant length scale. This invariant length scale would be agreed upon by all inertial observers. We hypothesize the approximate scale of the invariant length.

PACS numbers

03.30.+p 03.70.+k 42.50.-p 42.50.Nn 

References

  1. 1.
    H. Fearn, “Dispersion Relations and Relativistic Causality,” quant-ph/0310059.Google Scholar
  2. 2.
    H. Fearn, “Dispersion Relations and Causality: Does Relativistic Causality Require that n(ω) → 1 as ω → ∞?,” J. Mod. Opt. 53(16–17), 2569 (2006).MATHCrossRefADSGoogle Scholar
  3. 3.
    R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, Sci. Am. 269, 52 (1993); Phys. Rev. Lett. 71, 708 (1993).ADSGoogle Scholar
  4. 4.
    A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071 (1994).CrossRefADSGoogle Scholar
  5. 5.
    E. L. Bolda, J. C. Garrison, and R. Y. Chiao, Phys. Rev. A 49, 2938 (1994).CrossRefADSGoogle Scholar
  6. 6.
    L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).CrossRefADSGoogle Scholar
  7. 7.
    A. Kuzmich, A. Dogariu, J. L. Wang, et al., Phys. Rev. Lett. 86, 3925 (2001).CrossRefADSGoogle Scholar
  8. 8.
    P. W. Milonni, K. Furuya, and R. Y. Chiao, Opt. Express 8, 59 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    B. Segev, P. W. Milonni, J. F. Babb, and R. Y. Chiao, Phys. Rev. A 62, 022114 (2000).Google Scholar
  10. 10.
    L. Brillouin, Wave Propagation and Group Velocity (Academic, New York, 1960), pp. 11–13.MATHGoogle Scholar
  11. 11.
    A. Sommerfeld, Phys. Z. 8, 841 (1907).Google Scholar
  12. 12.
    K. Scharnhorst, Phys. Lett. B 236, 354 (1990).CrossRefADSGoogle Scholar
  13. 13.
    K. Scharnhorst, Ann. Phys. 7, 700 (1998).MATHCrossRefGoogle Scholar
  14. 14.
    G. Barton, Phys. Lett. B 237, 237 (1990).ADSGoogle Scholar
  15. 15.
    G. Barton and K. Scharnhorst, J. Phys. A: Math. Gen. 26, 2037 (1993).CrossRefADSGoogle Scholar
  16. 16.
    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon, Oxford, 1986; Gostekhizdat, Moscow, 1948), pp. 119–128.Google Scholar
  17. 17.
    L. L. D. Landau and E. M. Lifshitz, Statistical Physics, Parts 1 and 2, 3rd ed. (Nauka, Moscow, 1976; Addison-Wesley, Reading, Massachusetts, 1969).Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Nauka, Moscow, 1970; Pergamon, Oxford, 1960), pp. 256–262.Google Scholar
  19. 19.
    P. W. Milonni and K. Svozil, Phys. Lett. B 248, 437 (1990).CrossRefADSGoogle Scholar
  20. 20.
    S. Ben-Menahem, Phys. Lett. B 250, 133 (1990).CrossRefADSGoogle Scholar
  21. 21.
    J. S. Toll, Phys. Rev. 104, 1760 (1956).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. Cell-Mann, M. Goldberger, and W. E. Thirring, Phys. Rev. 95, 1612 (1954).CrossRefADSMathSciNetGoogle Scholar
  23. 23.
    V. Weisskopf, Del Kgl. Danske Videnskabernes Selskab, Mathematisk-fysiske Meddelelser XIV, Vol. 6, pp. 3–39 (1936); A. I. Miller Early Quantum Electrodynamics: A Source Book, Cam. U. Press, 1994).MathSciNetGoogle Scholar
  24. 24.
    H. M. Nussenzveig, Causality and Dispersion Relations (Academic, New York, 1972; Mir, Moscow, 1976), pp. 15–28, 43–45.Google Scholar
  25. 25.
    J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (Addison-Wesley, Cambridge, Massachusetts, 1955).Google Scholar
  26. 26.
    R. Kronig, J. Opt. Soc. Am., Rev. Sci. Instrum. 12, 547 (1926).CrossRefADSGoogle Scholar
  27. 27.
    H. A. Kramer, Atti. Congr. Int. Fis., Como 2, 545 (1927); reprinted in Collected Scientific Papers (North-Holland, Amsterdam, 1956), p. 333.Google Scholar
  28. 28.
    R. Kronig, Ned. Tijdschr. Natuurkd. 9, 402 (1942).MathSciNetGoogle Scholar
  29. 29.
    P. W. Milonni, “Fast and Slow Light,” in Proceedings of the Eighth Rochester Conference on Coherence and Quantum Optics, CQ08, Univ. of Rochester, 2001.Google Scholar
  30. 30.
    E. Wolf, Selected Works of Emil Wolf, with Commentary (World Sci., Singapore, 2001), p. 577.Google Scholar
  31. 31.
    J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975; Inostrannaya Literatura, Moscow, 1965), p. 311.MATHGoogle Scholar
  32. 32.
    J. J. Sakurai, Advanced Quantum Mechanics (Addison Wesley, Reading, 1967), p. 63.Google Scholar
  33. 33.
    W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, Mass., 1962; Inostrannaya Literatura, Moscow, 1963).MATHGoogle Scholar
  34. 34.
    J. Magueijo and Lee Smolin, Phys. Rev. Letts. 88, 190403 (2002).Google Scholar
  35. 35.
    L. Freidel, J. K. Glikman, and L. Smolin, “2 + 1 Gravity and Doubly Special Relativity,” hep-th/0307085 (2003).Google Scholar
  36. 36.
    G. A. Camelia, Phys. Letts. B 510, 255 (2001).MATHCrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • H. Fearn
    • 1
  1. 1.Department of PhysicsCalifornia State University FullertonFullertonUSA

Personalised recommendations