Advertisement

Laser Physics

, Volume 17, Issue 4, pp 496–507 | Cite as

Ionization of a single hydrogen-like atom by laser pulse of near-atomic strength

  • A. V. Andreev
  • O. A. Shoutova
  • S. Yu. Stremoukhov
Nonlinear Optics and Spectroscopy

Abstract

The dynamics of high-harmonic generation and atom ionization by a strong and superstrong laser field are studied. In contrast to many earlier works, the present theory does not impose limitations on the laser field’s strength. We solve the nonrelativistic problem of a single hydrogen-like atom’s ionization from the ground state by a short laser pulse of subatomic, atomic, and superatomic field strength. Within the framework of the proposed method, we investigated the matrix elements of the ionization transition and revealed its substantially nonlinear dependence on the laser field strength. Both ionization and recombination processes are taken into account. The proposed method enables us to take into account the arbitrary order multiphoton ionization processes.

PACS numbers

32.80 Fb 42.50.Hz 31.15.Ar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Nilsen, L. Madsen, and J. Hansen, Phys. Rev. A 66 (025402), 1 (2002).CrossRefGoogle Scholar
  2. 2.
    H. Nilsen, L. Madsen, and J. Hansen, J. Phys. B: At. Mol. Opt. Phys. 35, L403 (London, 2002).CrossRefADSGoogle Scholar
  3. 3.
    M. Klaiber, K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rev. A 71, 03348 (2005).Google Scholar
  4. 4.
    W. Becker, F. Grasbon, R. Kopold, et al., Adv. At., Mol., Opt. Phys. 48, 35 (2002).CrossRefGoogle Scholar
  5. 5.
    D. Bauer, D. B. Milosevic, and W. Becker, Phys. Rev. A 72, 023415 (2005).Google Scholar
  6. 6.
    J. L. Krause, K. J. Schafer, and K. C. Kulander, Phys. Rev. A 45, 4998 (1992).CrossRefADSGoogle Scholar
  7. 7.
    S. Dionissopoulou, T. Mercouris, and C. A. Nicolaides, J. Phys. B: At. Mol. Opt. Phys. 29, 47874794 (1996).Google Scholar
  8. 8.
    R. Ganeev, M. Baba, M. Suzuki, and H. Kuroda, Phys. Lett. A 339, 103 (2005).CrossRefADSGoogle Scholar
  9. 9.
    K. Furusawa, T. Okino, T. Shimizu, et al., Appl. Phys. B 83, 203 (2006).CrossRefADSGoogle Scholar
  10. 10.
    A. V. Andreev, Zh. Eksp. Teor. Fiz. 116, 793 (1999) [JETP 89, 421 (1999)].Google Scholar
  11. 11.
    A. Andreev and O. Shoutova, Phys. Lett. A 350, 309 (2006).CrossRefADSGoogle Scholar
  12. 12.
    C. Cohen-Tannoudji, B. Diu, and C. Laloe, Quantum Mechanics (Wiley, Paris, 1977).Google Scholar
  13. 13.
    J. J. Carrera, S.-I. Chu, and X. M. Tong, Phys. Rev. A 71, 1 (2005).CrossRefGoogle Scholar
  14. 14.
    Z. Chang, Phys. Rev. E 70, 043802 (2004).Google Scholar
  15. 15.
    V. Platonenko and V. Strelkov, Kvantovaya Elektron. 25, 582 (1998) [Quantum Electron. 28, 564 (1998)].Google Scholar
  16. 16.
    V. Platonenko, V. Strelkov, and A. Becker, Phys. Rev. A 71, 1 (2005).Google Scholar
  17. 17.
    M. V. Fedorov and O. Tikhonova, J. Phys. B 36, R125 (2003).CrossRefGoogle Scholar
  18. 18.
    A. L’Huillier, M. Lewenstein, P. Saliéres, et al., Phys. Rev. A 48, R3433 (1993).CrossRefADSGoogle Scholar
  19. 19.
    V. Usachenko, V. Pazdersky, and J. McIver, Phys. Rev. A 69, 013406 (2004).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • A. V. Andreev
    • 1
  • O. A. Shoutova
    • 1
  • S. Yu. Stremoukhov
    • 1
  1. 1.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations