Laser Physics

, Volume 17, Issue 2, pp 162–168 | Cite as

Phase behaviors of strongly correlated Fermi gases in one-dimensional confinements

  • S. H. Abedinpour
  • M. R. Bakhtiari
  • G. Xianlong
  • M. Polini
  • M. Rizzi
  • M. P. Tosi
Physics of Cold Trapped Atoms

Abstract

We report on the ground state of models for strongly correlated one-dimensional Fermi systems by means of theoretical studies of two-component atomic Fermi gases in highly anisotropic harmonic traps. In this context, we consider (i) the Gaudin-Yang model for a Luttinger liquid with repulsive interactions, including an analysis of the emergence of Wigner molecules in the 2kF → 4kF crossover, and (ii) the lattice Hubbard model yielding Luttinger liquid and Mott insulator or band-insulator phases for repulsive interactions and the Luther-Emery phase for attractive interactions, including in the former case an analysis of the role of disorder. Our calculations use novel versions of density and spin-density functional theory and a density-matrix renormalization-group technique. We also discuss preliminary results and future perspectives in the study of nonsymmetric two-component Fermi gases.

PACS numbers

03.75.Ss 71.10.Pm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. I. Cirac and P. Zoller, Science 301, 176 (2003).CrossRefGoogle Scholar
  2. 2.
    F. D. M. Haldane, Phys. Rev. Lett. 47, 1840 (1981).CrossRefADSGoogle Scholar
  3. 3.
    H. J. Schulz, G. Cuniberti, and P. Pieri, in Field Theory for Low-Dimensional Condensed Matter Systems, Ed. by G. Morandi et al. (Springer, Berlin, 2000), p. 9.Google Scholar
  4. 4.
    M. Olshanii, Phys. Rev. Lett. 81, 938 (1998).CrossRefADSGoogle Scholar
  5. 5.
    M. Gaudin, Phys. Lett. A 24, 55 (1967); C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).CrossRefADSGoogle Scholar
  6. 6.
    I. V. Tokatly, Phys. Rev. Lett. 93, 090405 (2004); J. N. Fuchs, A. Recati, and W. Zwerger, Phys. Rev. Lett. 93, 090408 (2004).Google Scholar
  7. 7.
    E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    N. A. Lima, M. F. Silva, L. N. Oliveira, and K. Capelle, Phys. Rev. Lett. 90, 146402 (2003).Google Scholar
  9. 9.
    L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. Lett. 60, 2430 (1988).CrossRefADSGoogle Scholar
  10. 10.
    Gao Xianlong, M. Polini, R. Asgari, and M. P. Tosi, Phys. Rev. A 73, 033609 (2006).Google Scholar
  11. 11.
    S. H. Abedinpour, M. Polini, Gao Xianlong, and M. P. Tosi (in press).Google Scholar
  12. 12.
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968); H. Shiba, Phys. Rev. B 6, 930 (1972).CrossRefADSGoogle Scholar
  13. 13.
    Gao Xianlong, M. Polini, M. P. Tosi, et al., Phys. Rev. B 73, 165120 (2006).Google Scholar
  14. 14.
    O. Gunnarsson and K. Schönhammer, Phys. Rev. Lett. 56, 1968 (1986).CrossRefADSGoogle Scholar
  15. 15.
    Gao Xianlong, M. Polini, B. Tanatar, and M. P. Tosi, Phys. Rev. B 73, 161103(R) (2006).Google Scholar
  16. 16.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefADSGoogle Scholar
  17. 17.
    A. Seidel and D.-H. Lee, Phys. Rev. Lett. 93, 046401 (2004).Google Scholar
  18. 18.
    Gao Xianlong, M. Rizzi, M. Polini, et al. (in press).Google Scholar
  19. 19.
    U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).CrossRefADSGoogle Scholar
  20. 20.
    G. F. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid (Cambridge Univ. Press, Cambridge, 2005).Google Scholar
  21. 21.
    M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W. Ketterle, Science 311, 492 (2006); G. B. Partridge, W. Li, R. I. Kamar, et al., Science 311, 503 (2006); M. W. Zwierlein and W. Ketterle, cond-mat/0603489; M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle, cond-mat/0605258.CrossRefADSGoogle Scholar
  22. 22.
    M. R. Bakhtiari, M. Polini, Gao Xianlong, and M. P. Tosi (in press).Google Scholar
  23. 23.
    W. V. Liu and F. Wilczek, Phys. Rev. Lett. 90, 047002 (2003); P. F. Bedaque, H. Caldas, and G. Rupak, Phys. Rev. Lett. 91, 247002 (2003); M. McNeil Forbes, E. Gubankova, W. V. Liu, and F. Wilczek, Phys. Rev. Lett. 94, 017001 (2005); J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 (2005); H. Caldas, condmat/0601148; C. C. Chien, Q. J. Chen, Y. He, and K. Levin, cond-mat/0605039.Google Scholar
  24. 24.
    A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 762 (1965)]; P. Fulde and R. A. Ferrell, Phys. Rev. A 135, 550 (1964); R. Casalbuoni and G. Nardulli, Rev. Mod. Phys. 76, 263 (2004).Google Scholar
  25. 25.
    K. Yang and D. F. Agterberg, Phys. Rev. Lett. 84, 4970 (2000); M. Houzet, A. Buzdin, L. Bulaevskii, and M. Maley, Phys. Rev. Lett. 88, 227001 (2002); V. Barzykin and L. P. Gor’kov, Phys. Rev. Lett. 90, 067003 (2003); K. Yang and A. H. MacDonald, Phys. Rev. B 70, 094512 (2004).CrossRefADSGoogle Scholar
  26. 26.
    M. Alford, J. A. Bowers, and K. Rajagopal, Phys. Rev. D 63, 074016 (2001); A. A. Isayev, Phys. Rev. C 65, 031302 (2002); R. Casalbuoni, R. Gatto, M. Mannarelli, and G. Nardulli, Phys. Rev. D 66, 014006 (2002).Google Scholar
  27. 27.
    T. Mizushima, K. Machida, and M. Ichioka, Phys. Rev. Lett. 94, 060404 (2005).Google Scholar
  28. 28.
    K. Yang, Phys. Rev. B 63, 140511 (2001); Phys. Rev. Lett. 95, 218903 (2005).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • S. H. Abedinpour
    • 1
  • M. R. Bakhtiari
    • 1
  • G. Xianlong
    • 1
  • M. Polini
    • 1
  • M. Rizzi
    • 1
  • M. P. Tosi
    • 1
  1. 1.NEST-CNR-INFM and Scuola Normale SuperiorePisaItaly

Personalised recommendations