Laser Physics

, Volume 17, Issue 2, pp 124–129

Frequency tuning and doubling in Yb-doped fiber lasers

  • V. A. Akulov
  • D. M. Afanasiev
  • S. A. Babin
  • D. V. Churkin
  • S. I. Kablukov
  • M. A. Rybakov
  • A. A. Vlasov
Physics of Lasers

Abstract

A compact Yb-doped fiber laser (YDFL) based on a tunable fiber Bragg grating (FBG) with ∼6 W output power and ∼45 nm tuning around 1080 nm has been developed. The laser output power and its spectral width (∼0.15 nm) do not change significantly at the tuning, while the FBG reflection coefficient increases with an increase in FBG compression. It has been shown that this increase is due to stress-induced changes in the FBG’s refractive-index modulation amplitude. Intracavity frequency doubling in the YDFL has also been performed. About 0.4 W of green radiation with tuning in the range 540–548 nm has been achieved with a KTP nonlinear crystal.

PACS numbers

42.55.Wd 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Gapontsev, I. E. Samartsev, A. A. Zayats, and R. R. Loryan, in Proceedings of the Conference on Adv. Solid State Lasers, Hilton Head, NC, 1991, Paper WC1-1, p. 214.Google Scholar
  2. 2.
    R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, 1999).Google Scholar
  3. 3.
    M. R. Mokhtar, C. S. Goh, S. A. Butler, et al., Electron. Lett. 39, 509 (2003).CrossRefGoogle Scholar
  4. 4.
    J. Yoonchan, C. Alegria, J. K. Sahu, et al., IEEE Photonics Technol. Lett. 16, 756 (2004).CrossRefADSGoogle Scholar
  5. 5.
    L. B. Fu, M. Ibsen, D. J. Richardson, et al., IEEE Photonics Technol. Lett. 17, 306 (2005).CrossRefADSGoogle Scholar
  6. 6.
    R. J. Thompson, M. Tu, D. C. Aveline, et al., Opt. Express 11, 1709 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    S. R. Abdullina, S. A. Babin, A. A. Vlasov, and S. I. Kablukov, Quantum Electron. 35, 857 (2005).CrossRefADSGoogle Scholar
  8. 8.
    V. Mizrahi and J. E. Sipe, J. Lightwave Technol. 11, 1513 (1993).CrossRefADSGoogle Scholar
  9. 9.
    K. Asaumi, Appl. Opt. 37, 555 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    S. A. Babin, D. V. Churkin, and E. V. Podivilov, Opt. Commun. 226, 329 (2003).CrossRefADSGoogle Scholar
  11. 11.
    D. B. S. Soh, C. Codemard, S. Wang, et al., IEEE Photonics Technol. Lett. 16, 1032 (2004).CrossRefADSGoogle Scholar
  12. 12.
    K. Mizuuchi, A. Morikawa, H. Furuya, and K. Yamamoto, in Proceedings of the Conference on Lasers and Electro-Optics (CLEO), 2005, Vol. 3, p. 2256.Google Scholar
  13. 13.
    Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, Opt. Express 12, 1843 (2004).CrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2007

Authors and Affiliations

  • V. A. Akulov
    • 1
  • D. M. Afanasiev
    • 1
  • S. A. Babin
    • 1
  • D. V. Churkin
    • 1
  • S. I. Kablukov
    • 1
  • M. A. Rybakov
    • 2
  • A. A. Vlasov
    • 1
  1. 1.Institute of Automation and Electrometry, Sibirian BranchRussian Academy of ScienseNovosibirskRussia
  2. 2.Inversion Fiber Co. Ltd.NovosibirskRussia

Personalised recommendations