Laser Physics

, Volume 16, Issue 12, pp 1625–1632 | Cite as

Interaction of CdSe/ZnS core-shell semiconductor nanocrystals in solid thin films

  • A. A. Chistyakov
  • I. L. Martynov
  • K. E. Mochalov
  • V. A. Oleinikov
  • S. V. Sizova
  • E. A. Ustinovich
  • K. V. Zakharchenko
Laser Spectroscopy

Abstract

The optical properties of CdSe/ZnS semiconductor nanocrystals with the core-shell structure are studied upon visible-laser excitation in a wide range of flux densities. It is demonstrated that the dimensional quantization effect is preserved in the films with a limiting high concentration of nanocrystals. A strong bathochromic shift of the absorption and luminescence peaks relative to the peak positions in the corresponding spectra of nanocrystals in films with a relatively low concentration of nanocrystals and solutions is caused by a high concentration of nanocrystals and the dipole moment related to the asymmetry of the nanoparticles. The shift is varied from 35 to 50 nm depending on the film thickness. The luminescence spectra of the films remain unchanged upon an increase in the laser intensity to 1 × 106 W/cm2. The laser action on the nanoparticle films is studied at intensities (5 × 106−1 × 109 W/cm2) higher than the damage threshold.

PACS numbers

81.07.Bc 81.20.Fw 42.62.Fi 78.67.Hc 78.67.Pt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Oliver, Report of Business Commun. Comp., Inc., GB-278 (2005).Google Scholar
  2. 2.
    P. Alivisatos, Nature Biotechnol. 22, 47 (2004).CrossRefGoogle Scholar
  3. 3.
    I. L. Medintz, H. T. Uveda, E. R. Goldman, and H. Mattoussi, Nature Mater. 4, 435 (2005).CrossRefADSGoogle Scholar
  4. 4.
    X. Michalet, F. F. Pinaud, L. A. Bentolila, et al., Science 307, 538 (2005).CrossRefADSGoogle Scholar
  5. 5.
    A. P. Alivisatos, W. Gu, and C. Larabell, Annu. Rev. Biomed. Eng. 7, 55 (2005).CrossRefGoogle Scholar
  6. 6.
    V. I. Klimov, A. A. Mikhailovsky, S. Xu, et al., Science 290, 314 (2000).CrossRefADSGoogle Scholar
  7. 7.
    M. Achermann, M. A. Petruska, S. Kos, et al., Nature 429, 642 (2004).CrossRefADSGoogle Scholar
  8. 8.
    M. V. Jarosz, N. E. Stott, M. Drndic, et al., J. Phys. Chem. B 107, 12585 (2003).CrossRefGoogle Scholar
  9. 9.
    A. H. Mueller, M. A. Petruska, M. Achermann, et al., Nano Lett. 5, 1039 (2005).CrossRefGoogle Scholar
  10. 10.
    Q. Gu, C. Cheng, R. Gonela, et al., Nanotechnology 17, R14 (2006).CrossRefADSGoogle Scholar
  11. 11.
    V. Stsiapura, A. Sukhanova, A. Baranov, et al., “DNA-Assisted Formation of Quasi-Nanowires from Fluorescent CdSe/ZnS Nanocrystals,” Nanotechnology 17, 581–587 (2006).CrossRefADSGoogle Scholar
  12. 12.
    V. Stsiapura, A. Sukhanova, M. Artemyev, et al., Opt. Spektrosk. 100, 935 (2006) [Opt. Spectrosc. 100, 854 (2006)].CrossRefGoogle Scholar
  13. 13.
    K. M. Gattás-Asfura, C. A. Constantine, M. J. Lynn, et al., J. Am. Chem. Soc. 127, 14640 (2005).CrossRefGoogle Scholar
  14. 14.
    A. Sukhanova, A. V. Baranov, M. V. Artemyev, et al., Chem. Biochem. (2006) (in press).Google Scholar
  15. 15.
    A. Y. Nazzal, X. Wang, L. Qu, et al., J. Phys. Chem. B 108, 5507 (2004).CrossRefGoogle Scholar
  16. 16.
    P. Yang, C. L. Li, and N. Murase, Langmuir 21, 8913 (2005).CrossRefGoogle Scholar
  17. 17.
    M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, Chem. Mater. 8, 173 (1996).CrossRefGoogle Scholar
  18. 18.
    J. R. Heine, J. Rodriguez-Viejo, M. G. Bawendi, and K. F. Jensen, J. Cryst. Growth 195, 564 (1998).CrossRefGoogle Scholar
  19. 19.
    M. Bruchez, Jr., M. Moronne, P. Gin, et al., Science 281, 2013 (1998).CrossRefADSGoogle Scholar
  20. 20.
    A. Sukhanova, L. Venteo, J. Devy, et al., Laboratory Investigations/Brief Methods 82, 1259 (2002).Google Scholar
  21. 21.
    K. V. Zaharchenko, E. A. Obraztcova, K. E. Mochalov, et al., Laser Phys. 15, 1150 (2005).Google Scholar
  22. 22.
    M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).CrossRefGoogle Scholar
  23. 23.
    M. V. Artemyev, U. Woggon, H. Jaschinski, et al., J. Phys. Chem. B 104, 11617 (2000).CrossRefGoogle Scholar
  24. 24.
    C. B. Murray and C. R. Kagan, Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
  25. 25.
    H. Döllefeld, H. Weller, and A. Eychmüller, J. Phys. Chem. B 106, 5604 (2002).CrossRefGoogle Scholar
  26. 26.
    Y. Babayan, J. E. Barton, E. C. Greyson, and T. W. Odom, Adv. Mater. 16, 1341 (2004).CrossRefGoogle Scholar
  27. 27.
    A. Malko, A. A. Mikhailovsky, M. A. Petruska, et al., Appl. Phys. Lett. 81, 1303 (2002).CrossRefADSGoogle Scholar
  28. 28.
    A. N. Artyuhovich, Yu. A. Bykovskii, Yu. L. Pechenkin, et al., Opt. Spektrosk. 70, 553 (1991) [Opt. Spectrosc. 70, 325 (1991)].Google Scholar
  29. 29.
    S. Pradhan, S. Chen, S. Wang, et al., Langmuir 22, 787 (2006).CrossRefGoogle Scholar
  30. 30.
    HyperChem (Hypercube Inc., 2003), Vol. 7.51.Google Scholar
  31. 31.
    M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. P. Stewart, J. Am. Chem. Soc. 107, 3902 (1985).CrossRefGoogle Scholar
  32. 32.
    O. Schmelz, A. Mews, Th. Basche, et al., Langmuir 17, 2861 (2001).Google Scholar
  33. 33.
    A. Striolo, J. Ward, J. M. Prausnitz, et al., J. Phys. Chem. B 106, 5500 (2002).CrossRefGoogle Scholar
  34. 34.
    C. A. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, J. Phys. Chem. B 106, 7619 (2002).CrossRefGoogle Scholar
  35. 35.
    W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).CrossRefGoogle Scholar
  36. 36.
    W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 16, 560 (2004).CrossRefGoogle Scholar
  37. 37.
    A. Sukhanova, J. Devy, L. Venteo, et al., Chem. Mater. 324, 560 (2004).Google Scholar
  38. 38.
    B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, et al., J. Phys. Chem. B 101, 9463 (1997).CrossRefGoogle Scholar
  39. 39.
    S. A. McDonald, P. W. Cyr, L. Levina, and E. H. Sargent, Appl. Phys. Lett. 85, 2089 (2004).CrossRefADSGoogle Scholar
  40. 40.
    Lasers. A Handbook, Ed. by A. M. Prokhorov (Sov. Radio, Moscow, 1978), p. 340 [in Russian].Google Scholar
  41. 41.
    V. L. Colvin, K. L. Cunningham, and A. P. Alivisatos, J. Chem. Phys. 101, 7122 (1994).CrossRefADSGoogle Scholar
  42. 42.
    S. A. Blanton, R. L. Leheny, M. A. Hines, and P. Guyot-Sionnest, Phys. Rev. Lett. 79, 865 (1997).CrossRefADSGoogle Scholar
  43. 43.
    M. Shim and P. Guyot-Sionnest, J. Chem. Phys. 111, 6955 (1999).CrossRefADSGoogle Scholar
  44. 44.
    M. V. Artemyev, A. I. Bibik, L. I. Gurinovich, et al., Phys. Rev. B 60, 1504 (1999).CrossRefADSGoogle Scholar
  45. 45.
    B. S. Kim, M. A. Islam, L. E. Brus, and I. P. Herman, J. Appl. Phys. 89, 8127 (2001).CrossRefADSGoogle Scholar
  46. 46.
    E. Rabani, J. Chem. Phys. 115, 1493 (2001).CrossRefADSGoogle Scholar
  47. 47.
    F. Koberling, U. Kolb, G. Philipp, et al., J. Phys. Chem. B 107, 7463 (2003).CrossRefGoogle Scholar
  48. 48.
    Y. Ebenstein, T. Mokari, and U. Banina, Appl. Phys. Lett. 80, 4033 (2002).CrossRefADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • A. A. Chistyakov
    • 1
  • I. L. Martynov
    • 1
  • K. E. Mochalov
    • 2
  • V. A. Oleinikov
    • 2
  • S. V. Sizova
    • 2
  • E. A. Ustinovich
    • 3
  • K. V. Zakharchenko
    • 1
  1. 1.Moscow Engineering Physical InstituteState UniversityMoscowRussia
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Physicochemical Research InstituteBelarussian State UniversityBelarus

Personalised recommendations