Advertisement

Laser Physics

, Volume 16, Issue 11, pp 1595–1600 | Cite as

Observable geometric phase induced by a cyclically evolving dissipative process

  • A. Carollo
  • G. M. Palma
Quantum Information and Quantum Computation

Abstract

In [1], a new way to generate an observable geometric phase on a quantum system by means of a completely incoherent phenomenon has been proposed. The basic idea is to force the ground state of the system to evolve cyclically by “adiabatically” manipulating the environment with which it interacts. The specific scheme analyzed in [1], consisting of a multilevel atom interacting with a broadband squeezed vacuum bosonic bath whose squeezing parameters are smoothly changed in time along a closed loop, is here solved in a more direct way. This new solution emphasizes how the geometric phase at the ground state of the system is indeed due to a purely incoherent dynamics.

PACS numbers

03.65.Vf 03.67.-a 05.30.-d 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Carollo, A. Łožinski, G. M. Palma, et al., Phys. Rev. Lett. 96, 150 403 (2006).Google Scholar
  2. 2.
    M. Berry, Proc. R. Soc. London, Ser. A 392, 47 (1984); in Geometric Phases in Physics, Ed. by A. Shapere and F. Wilczek (World Sci., Singapore, 1989).ADSGoogle Scholar
  3. 3.
    G. DeChiara and G. M. Palma, Phys. Rev. Lett. 91, 090 404 (2003); A. Carollo, I. Fuentes-Guridi, M. Franca Santos, and V. Vedral, Phys. Rev. Lett. 90, 090 404 (2003); Phys. Rev. Lett. 92, 020402 (2004).Google Scholar
  4. 4.
    A. K. Ekert, G. M. Palma, S. Barnett, and P. L. Knight, Phys. Rev. A 39, 6026 (1989).CrossRefADSGoogle Scholar
  5. 5.
    G. S. Agarwal and R. R. Puri, Phys. Rev. A 41, 3782 (1990).CrossRefADSGoogle Scholar
  6. 6.
    G. M. Palma, K. A. Suominen, and A. K. Ekert, Proc. R. Soc. London, Ser. A 452, 567 (1996).zbMATHMathSciNetADSCrossRefGoogle Scholar
  7. 7.
    Lu-Ming Duan and Guang-Can Guo, Phys. Rev. Lett. 79, 1953 (1997).CrossRefADSGoogle Scholar
  8. 8.
    P. Zanardi and M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997).CrossRefADSGoogle Scholar
  9. 9.
    D. A. Lidar, I. L. Chuang, and K. B. Whaley, Phys. Rev. Lett. 81, 2594 (1998).CrossRefADSGoogle Scholar
  10. 10.
    A. Barenco, A. Berthiaume, D. Deutsch, et al., SIAM J. Comput. 26, 1541 (1997).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. F. Poyatos, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 77, 4708 (1996).CrossRefADSGoogle Scholar
  12. 12.
    C. J. Myatt, B. E. King, Q. A. Turchette, et al., Nature 403, 269 (2000).CrossRefADSGoogle Scholar
  13. 13.
    A. Kuzmich, K. Mølmer, and E. S. Polzik, Phys. Rev. Lett. 79, 4782–4785 (1997).CrossRefADSGoogle Scholar
  14. 14.
    A. R. R. Carvalho, P. Milman, R. L. de Matos Filho, and L. Davidovich, Phys. Rev. Lett. 86, 4988 (2001).CrossRefADSGoogle Scholar
  15. 15.
    J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, Nature 403, 869 (1999).CrossRefADSGoogle Scholar
  16. 16.
    A. Ekert, M. Ericsson, P. Hayden, et al., J. Mod. Opt. 47, 2501 (2000).zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    A. Carollo, M. F. Santos, and V. Vedral, Phys. Rev. Lett., 96, 020403 (2006).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • A. Carollo
    • 1
  • G. M. Palma
    • 2
  1. 1.Institute of Quantum Optics and Quantum InformationInnsbruckAustria
  2. 2.NEST-CNR and Dipartimento di Scienze Fisiche ed AstronomicheUniversitá di PalermoPalermoItaly

Personalised recommendations