Laser Physics

, Volume 16, Issue 11, pp 1525–1532 | Cite as

On decoherence in quantum clock synchronization

  • S. Boixo
  • C. M. Caves
  • A. Datta
  • A. Shaji
Quantum Information and Quantum Computation

Abstract

We study two quantum versions of the Eddington clock-synchronization protocol in the presence of decoherence. The first protocol uses maximally entangled states to achieve the Heisenberg limit for clock synchronization. The second protocol achieves the limit without using entanglement. We show the equivalence of the two protocols under any single-qubit decoherence model that does not itself provide synchronization information.

PACS numbers

03.67.-a 03.65.Ta 03.65.Yz 03.67.Mn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. B. Braginsky and Y. I. Vorontsov, Sov. Phys. Usp. 17, 644 (1975).CrossRefADSGoogle Scholar
  2. 2.
    V. Giovanetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).CrossRefADSGoogle Scholar
  3. 3.
    C. M. Caves, K. S. Thorne, R. W. P. Drever, et al., Rev. Mod. Phys. 52, 341 (2004).CrossRefADSGoogle Scholar
  4. 4.
    J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A 54, R4649 (1996).CrossRefADSGoogle Scholar
  5. 5.
    S. F. Huelga, C. Macchiavello, T. Pellizzari, et al., Phys. Rev. Lett. 79, 3865 (1997).CrossRefADSGoogle Scholar
  6. 6.
    R. Jozsa, D. S. Abrams, J.D. Dowling, and C. P. Williams, Phys. Rev. Lett. 85, 2010 (2000).CrossRefADSGoogle Scholar
  7. 7.
    I. L. Chuang, Phys. Rev. Lett. 85, 2006 (2000).CrossRefADSGoogle Scholar
  8. 8.
    J. Preskii, quant-ph/0010098 (2000).Google Scholar
  9. 9.
    U. Yurtsever and J. P. Dowling, Phys. Rev. A 65, 052317 (2002).Google Scholar
  10. 10.
    M. Revzen and A. Mann, Phys. Lett. A 312, 11 (2003).MATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    M. de Burgh and S. D. Bartlett, Phys. Rev. A 72, 042301 (2005).Google Scholar
  12. 12.
    T. Rudolph and L. Grover, Phys. Rev. Lett. 91, 217905 (2003).Google Scholar
  13. 13.
    H. Salecker and E. P. Wigner, Phys. Rev. 109, 571 (1958).MATHMathSciNetCrossRefADSGoogle Scholar
  14. 14.
    S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).MATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).MATHGoogle Scholar
  16. 16.
    A. Shaji and C. M. Caves, (2006) (in press).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • S. Boixo
    • 1
  • C. M. Caves
    • 1
  • A. Datta
    • 1
  • A. Shaji
    • 1
  1. 1.Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations