Advertisement

Laser Physics

, 16:927 | Cite as

Photonic band-gap enhanced second-harmonic generation in a planar lithium niobate waveguide

  • C. Deng
  • J. W. Haus
  • A. Sarangan
  • A. Mahfoud
  • C. Sibilia
  • M. Scalora
  • A. Zheltikov
Charles M. Bowden Memorial Issue

Abstract

Enhanced second-harmonic generation (SHG) conversion efficiency was theoretically predicted in waveguide geometry with coupling to a one-dimensional grating photonic band gap (PBG). We report a series of experiments using samples made with lithium niobate. A waveguide was fabricated near the surface by applying the proton-exchange technique. The characteristics of waveguide modes were determined by several techniques: prism coupling, diffraction, and Cherenkov radiation. The WKB method was used to analyze the results. Ultraviolet laser lithography was applied to make PBG gratings on the sample. We further investigated Cherenkov second-harmonic generation (CSHG), i.e., SHG radiated into the substrate, under the condition of a band-edge PBG resonance in the waveguides. The SHG inside planar waveguides was also experimentally investigated. We fabricated waveguides with multiple pump modes and found that the second mode was more efficient in enhancing the second harmonic signal. This result is explained by our model. Several samples were investigated in detail; the highest conversion efficiency of CSHG with a PBG was enhanced around 50 times above the CSHG signal without a PBG. A numerical model was constructed with parameters calculated from our sample characterization data to interpret the experimental results.

PACS numbers

42.65.Wi 42.81.Qb 

References

  1. 1.
    Phys. Today, No. 7, 17 (2003).Google Scholar
  2. 2.
    J. Webjorn, D. Nam, S. Siala, and R. Waarts, “Nonlinear Waveguides on the Way to the Marketplace,” Opt. Photonics News, No. 4, 16 (1997).Google Scholar
  3. 3.
    J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between Light Waves in Nonlinear Dielectric,” Phys. Rev. 127, 1918 (1962).CrossRefADSGoogle Scholar
  4. 4.
    J. Webjoru, F. Laurell, and G. Arvidsson, “Blue Light Generated by Frequency Doubling of Laser Diode Light in a Lithium Niobate Waveguide,” IEEE Photonics Technol. Lett. 1, 316 (1989).CrossRefADSGoogle Scholar
  5. 5.
    E. J. Lim, M. M. Feier, and R. L. Byer, “Second Harmonic Generation of Green Light in Periodically Poled Lithium Niobate Waveguide,” Electron. Lett. 25, 174 (1989).Google Scholar
  6. 6.
    R. Viswanathan, PhD Thesis (Dept. of Physics, Rensselaer Polytechnic Institute, 1999).Google Scholar
  7. 7.
    J. W. Haus, R. Viswanathan, M. Scalora, et al., “Enhanced Second-Harmonic Generation in Media with a Weak Periodicity,” Phys. Rev. A 57, 2120 (1998).CrossRefADSGoogle Scholar
  8. 8.
    D. Pezzetta, C. Sibilia, M. Bertolotti, et al., “Enhanced Cherenkov Second-Harmonic Generation in a Planar Nonlinear Waveguide that Reproduces a One-Dimensional Photonic Band-Gap Structure,” J. Opt. Soc. Am. B 19, 2102 (2002).ADSGoogle Scholar
  9. 9.
    D. Pezzetta, C. Sibilia, M. Bertolotti, et al., “Photonic Band-Gap Structures in Planar Waveguides: Application to Second-Harmonic Generation,” J. Opt. Soc. Am. B 18, 1326 (2001).ADSGoogle Scholar
  10. 10.
    G. D’Aguanno, M. Centini, et al., “Photonic Band Edge Effects in Finite Structures and Applications to χ(2) Interactions,” Physical Rev. E 64, 016609 (2001).Google Scholar
  11. 11.
    Y. Dumeige, P. Vidakovic, and S. Sauvagnes, “En hancement of Second-Harmonic Generation in a One-Dimensional Semiconductor Band Gap,” Appl. Phys. Lett. 78, 3021 (2001).CrossRefADSGoogle Scholar
  12. 12.
    A. V. Balakin, V. A. Bushuev, N. I. Koroteev, et al., “Enhancement of Second-Harmonic Generation with Femtosecond Laser Pulses Near the Photonic Band Edge for Different Polarizations of Incident Light,” Opt. Lett. 24, 793 (1999).ADSGoogle Scholar
  13. 13.
    V. Foglietti, E. Cianci, D. Pezzetta, et al., “Fabrication of Band-Gap Structures in Planar Nonlinear Waveguides for Second Harmonic Generation,” Microelectron. Eng. 67–68, 742 (2003).CrossRefGoogle Scholar
  14. 14.
    J. Torres, D. Coquillat, et al., “Giant Second-Harmonic Generation in a One-Dimensional GaN Photonic Crystal,” Phys. Rev. B 69, 08505 (2004).Google Scholar
  15. 15.
    G. Blau, E. Popov, et al., “Grating-Assisted Phase-Matched Second-Harmonic Generation from a Polymer Waveguide,” Opt. Lett. 20, 1101 (1995).ADSGoogle Scholar
  16. 16.
    R. W. Boyd, Nonlinear Optics (Academic, New York, 1992).Google Scholar
  17. 17.
    M. Quillec, Materials for Optoelectronics (Kluwer, Dordrecht, 1996).Google Scholar
  18. 18.
    G. I. Stegeman and C. T. Seaton, “Nonlinear Integrated Optics,” J. Appl. Phys. 58, R57 (1985).CrossRefADSGoogle Scholar
  19. 19.
    E. Glavas, J. M. Cabrera, and P. D. Townsend, “A Comparison of Optical Damage in Different Types of LiNbO3 Waveguides,” J. Phys. D: Appl. Phys. 22, 611 (1989).CrossRefADSGoogle Scholar
  20. 20.
    F. Laurell, M. G. Roelofs, and H. Hsiung, “Loss of Optical Nonlinearity in Proton-Exchanged LiNbO3 Waveguides,” Appl. Phys. Lett. 60, 301 (1992).CrossRefADSGoogle Scholar
  21. 21.
    W-Y. Hsu, C. S. Willand, V. Gopalan, and M. C. Gupta, “Effect of Proton Exchange on the Nonlinear Optical Properties of LiNbO3 and LiTaO3,” Appl. Phys. Lett. 61, 2263 (1992).CrossRefADSGoogle Scholar
  22. 22.
    M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth Profiling of the d 33 Nonlinear Coefficient in Annealed Proton Exchanged LiNbO3 Waveguides,” Appl. Phys. Lett. 62, 2012 (1993).CrossRefADSGoogle Scholar
  23. 23.
    N. Goto and Gar Lam Yip, “Characterization of Proton-Exchange and Annealed LiNbO3 Waveguides with Pyrophosphoric Acid,” Appl. Opt. 28, 60 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    C. Ziling, L. Pokrovskii, et al., “Optical and Structural Properties of Annealed PE: LiNbO3 Waveguides Formed with Pyrophosphoric and Benzoic Acids,” J. Appl. Phys. 73, 3125 (1993).CrossRefADSGoogle Scholar
  25. 25.
    J. Rams and J. M. Cabrera, “Preparation of Proton-Exchange LiNbO3 Waveguides in Benzonic Acid Vapor,” J. Opt. Soc. Am. B 16, 401 (1999).ADSGoogle Scholar
  26. 26.
    A. Di Lallo, A. Cino, C. Conti, and G. Assanto, “Second Harmonic Generation in Reverse Proton Exchanged Lithium Niobate Waveguides,” Optics Express 8, 232 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    Y. N. Korkishko, V. A. Fedorov, T. M. Morozova, et al., “Reverse Proton Exchange for Buried Waveguides in LiNbO3,” J. Opt. Soc. Am. A 15, 1838 (1998).ADSGoogle Scholar
  28. 28.
    S. Nonogaki, Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology (Marcel Dekker, New York, 1998).Google Scholar
  29. 29.
    D. A. Darbyshire, “Ion and Plasma Assisted Etching of Holographic Gratings,” Vacuum 36, 55 (1985).CrossRefGoogle Scholar
  30. 30.
    R. S. Cheng, “Wet-Etched Ridge Waveguides in Y-Cut Lithium Niobate,” J. Lightwave Technol. 15, 1880 (1997).CrossRefADSGoogle Scholar
  31. 31.
    F. Laurell, “Wet Etching of Proton-Exchanged Lithium Niobate—A Novel Processing Technique,” J. Lightwave Technol. 10, 1606 (1992).CrossRefADSGoogle Scholar
  32. 32.
    R. S. Cheng, “Mach-Zehnder Modulators with Lithium Niobate Ridge Waveguides Fabricated by Proton-Exchange Wet Etch and Nickel Indiffusion,” IEEE Photonics Tech. Lett. 7, 1282 (1995).CrossRefADSGoogle Scholar
  33. 33.
    A. J. Boyland, “Latency Effects and Periodic Structures in Light-Induced Frustrated Etching of Fe: Doped LiNbO3,” Appl. Phys. Lett. 77, 2792 (2000).CrossRefADSGoogle Scholar
  34. 34.
    Y. N. Korkishko, V. A. Fedorov, and S. M. Kostritskii, “Optical and X-ray Characterization of HxLi1 − xNbO3 Phases Generated in Proton Exchanged LiNbO3 Optical Waveguides,” J. Appl. Phys. 84, 2411 (1998).CrossRefADSGoogle Scholar
  35. 35.
    N. A. Sanford and W. C. Robinson, “Direct Measurement of Effective Indices of Guided Modes in LiNbO3 Waveguides Using Cherenkov Second Harmonic,” Opt. Lett. 12, 445 (1987).ADSCrossRefGoogle Scholar
  36. 36.
    K. S. Chiang, “Construction of Refractive-Index Profiles of Planar Dielectric Waveguides from the Distribution of Effective Indexes,” J. Lightwave Technol. 3, 385 (1985).ADSCrossRefGoogle Scholar
  37. 37.
    J. M. White and P. F. Heidrich, “Optical Waveguide Refractive Index Profiles Determined from Measurement of Mode Indices: A Simple Analysis,” Appl. Opt. 15, 151 (1976).ADSCrossRefGoogle Scholar
  38. 38.
    C. R. Pollock, Fundamental of Optoelectronics (Richard D. Irwin, 1995).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • C. Deng
    • 1
  • J. W. Haus
    • 1
  • A. Sarangan
    • 1
  • A. Mahfoud
    • 1
  • C. Sibilia
    • 2
  • M. Scalora
    • 3
  • A. Zheltikov
    • 4
  1. 1.Electro-Optics ProgramUniversity of DaytonDaytonUSA
  2. 2.INFM at Dipartimento di EnergeticaUniversità di Roma “La Sapienza”RomeItaly
  3. 3.Weapons Sciences DirectorateUS Army Aviation and Missile Command HuntsvilleUSA
  4. 4.International Laser Center, Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations