Laser Physics

, Volume 16, Issue 6, pp 897–901

Localized electromagnetic eigenmodes in three-dimensional metallic photonic fractals

  • K. Sakoda
Charles M. Bowden Memorial Issue


The existence of localized electromagnetic eigenmodes in a three-dimensional metallic fractal of stage three was verified theoretically for the first time. Eigenfrequencies and the field distribution of the localized modes were successfully calculated by the numerical simulation of dipole radiation based on the finite-difference time-domain method. The 90° light-scattering spectra agreed well with the eigenfrequencies and satisfied the selection rule due to the symmetry of the eigenmodes.

PACS numbers

14.20.Jb 61.43.Hv 02.70.Bf 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982).MATHGoogle Scholar
  2. 2.
    J. Feder, Fractals (Plenum, New York, 1988).MATHGoogle Scholar
  3. 3.
    X. Sun and D. L. Jaggard, J. Appl. Phys. 70, 2500 (1991).CrossRefADSGoogle Scholar
  4. 4.
    W. Wen, J. Zhou, J. Li, et al., Phys. Rev. Lett. 89, 223901 (2002).CrossRefADSGoogle Scholar
  5. 5.
    M. Bertolotti, P. Masciulli, and C. Sibilia, Opt. Lett. 19, 777 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    M. Bertolotti, P. Masciulli, P. Ranieri, and C. Sibilia, J. Opt. Soc. Am. B 13, 1517 (1996).ADSGoogle Scholar
  7. 7.
    S. Alexander and R. Orbach, J. Phys. Lett. 43, 625 (1982).Google Scholar
  8. 8.
    J. W. Kantelhardt, A. Bunde, and L. Schweitzer, Phys. Rev. Lett. 81, 4907 (1998).CrossRefADSGoogle Scholar
  9. 9.
    S. Kanehira, S. Kirihara, Y. Miyamoto, et al., J. Mat. Res. 18, 2214 (2003).ADSGoogle Scholar
  10. 10.
    S. Kanehira, S. Kirihara, Y. Miyamoto, et al., J. Am. Ceram. Soc. 86, 1691 (2003).CrossRefGoogle Scholar
  11. 11.
    M. Wada-Takeda, S. Kirihara, Y. Miyamoto, et al., Phys. Rev. Lett. 92, 093902 (2004).Google Scholar
  12. 12.
    K. Sakoda, S. Kirihara, Y. Miyamoto, et al., Appl. Phys. B 81, 321 (2005).CrossRefADSGoogle Scholar
  13. 13.
    K. Sakoda, Phys. Rev. B 72, 184201 (2005).CrossRefADSGoogle Scholar
  14. 14.
    K. Sakoda, Opt. Express 13, 9585 (2005).CrossRefADSGoogle Scholar
  15. 15.
    T. Inui, Y. Tanabe, and Y. Onodera, Group Theory and Its Applications in Physics (Springer, Berlin, 1990).MATHGoogle Scholar
  16. 16.
    K. Sakoda, Phys. Rev. B 52, 7982 (1995).CrossRefADSGoogle Scholar
  17. 17.
    K. Sakoda, Optical Properties of Photonic Crystals, 2nd ed. (Springer, Berlin, 2004).Google Scholar
  18. 18.
    K. Sakoda and H. Shiroma, Phys. Rev. B 56, 4830 (1997).CrossRefADSGoogle Scholar
  19. 19.
    A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995).MATHGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • K. Sakoda
    • 1
    • 2
  1. 1.Nanomaterials LaboratoryNational Institute for Materials ScienceIbarakiJapan
  2. 2.Japan and Graduate School of Pure and Applied SciencesUniversity of TsukubaIbarakiJapan

Personalised recommendations