Laser Physics

, Volume 16, Issue 4, pp 562–570 | Cite as

Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals: A novel approach

  • Y. J. Ding
  • W. Shi
Modern Trends in Laser Physics


We review our up-to-date result on the development of widely tunable monochromatic THz sources, implemented based on difference-frequency generation (DFG) in GaSe, ZnGeP2, and GaP. Using a GaSe crystal, the output wavelength was tuned in the range from 66.5 μm to 5664 μm (from 150 cm−1 to 1.77 cm−1) with the highest peak power 389 W. This tuning range is the widest ever produced for a continuously tunable and coherent tabletop THz source. Moreover, the conversion efficiency 0.1% is also the highest ever achieved for a tabletop system. On the other hand, based on DFG in a ZnGeP2 crystal, the output wavelength was tuned in the ranges 83.1–1642 μm and 80.2–1416 μm for two phase-matching configurations. The output power has reached 134 W so far. Finally, using a GaP crystal, the output wavelength was tuned in the range 71.1–2830 μm, whereas the highest peak power was 15.6 W. The advantage of using GaP over GaSe and ZnGeP2 is that crystal rotation is no longer required for wavelength tuning. Instead, one just needs to tune the wavelength of one mixing beam within the bandwidth of as narrow as 15.3 nm.

PACS numbers

42.65.Lm 42.65.Ky 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed. (Wiley, London, 1984).Google Scholar
  2. 2.
    R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Gating, “Optical Properties of the Atmosphere,” in Handbook of Optics, Ed. by W. G. Driscoll (McGraw Hill, New York, 1978).Google Scholar
  3. 3.
    C. Tomasi, “Vertical Mass Loading of Aerosol Particles by Sun-Photometric Measurements,” in Optical Remote Sensing of Air Pollution, Ed. by P. Camagni and S. Sandroni (Elsevier, New York, 1984).Google Scholar
  4. 5.
    K. H. Yang, P. L. Richards, and Y. R. Shen, Appl. Phys. Lett. 19, 320 (1971).Google Scholar
  5. 6.
    D. H. Auston, K. P. Cheung, and P. R. Smith, Appl. Phys. Lett. 45, 284 (1984).CrossRefADSGoogle Scholar
  6. 7.
    M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, Phys. Rev. Lett. 9, 446 (1962); D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. 53, 1555 (1984).CrossRefADSGoogle Scholar
  7. 8.
    M. van Exter, C. Fattinger, and D. Grischkowsky, Opt. Lett. 14, 1128 (1989).ADSGoogle Scholar
  8. 9.
    R. Köhler, A. Tredicucci, F. Beltram, et al., Nature 417, 156 (2002).CrossRefADSGoogle Scholar
  9. 10.
    H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, et al., Appl. Phys. Lett. 33, 151 (1978).CrossRefADSGoogle Scholar
  10. 11.
    W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, Opt. Lett. 27, 1454 (2002).Google Scholar
  11. 12.
    W. Shi and Y. J. Ding, Appl. Phys. Lett. 84, 1635 (2004).ADSGoogle Scholar
  12. 13.
    W. Shi and Y. J. Ding, “Tunable Coherent Radiation from Terahertz to Microwave by Mixing Two Infrared Frequencies in a 47-mm-Long GaSe Crystal,” submitted to Int. J. High Speed Electron. Syst.Google Scholar
  13. 14.
    W. Shi and Y. J. Ding, “Coherent and Widely-Tunable THz and Millimeter Waves Based on Difference-Frequency Generation in GaSe and ZnGeP2,” Opt. Photonics News, 57 (2002).Google Scholar
  14. 15.
    W. Shi and Y. J. Ding, Appl. Phys. Lett. 83, 848 (2003).ADSGoogle Scholar
  15. 16.
    W. Shi, Y. J. Ding, and P. G. Schunemann, Opt. Commun. 233, 183 (2004).CrossRefADSGoogle Scholar
  16. 17.
    W. Shi and Y. J. Ding, Opt. Lett. 30, 1030 (2005).ADSGoogle Scholar
  17. 18.
    W. Shi, X. Mu, Y. J. Ding, and N. Fernelius, Appl. Phys. Lett. 80, 3889 (2002).ADSGoogle Scholar
  18. 19.
    W. Shi and Y. J. Ding, Laser Phys. Lett. 1, 560 (2004).CrossRefGoogle Scholar
  19. 20.
    H. Sun, W. Shi, Z. Fu, Y. J. Ding, and Y. B. Zotova, “Bragg Reflectors and 2-D Photonic Crystals in the THz Region,” in Terahertz for Military and Security Applications III, Ed. by R. J. Hwu, D. L. Woolard, and M. J. Rosker (SPIE, Bellingham, WA, London, 2005), Proc. SPIE 5790, 104–115 (2005).Google Scholar
  20. 21.
    E. D. Palik, Handbook of Optical Constants of Solids III (Academic, New York, 1998).Google Scholar
  21. 22.
    V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, Berlin, 1999).Google Scholar
  22. 23.
    P. D. Mason, D. J. Jackson, and E. K. Gorton, Opt. Commun. 110, 163 (1994).CrossRefADSGoogle Scholar
  23. 24.
    G. C. Bhar, L. K. Samanta, D. K. Ghosh, and S. Das, Sov. J. Quantum Electron. 17, 860 (1987).CrossRefGoogle Scholar
  24. 25.
    G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, Appl. Phys. Lett. 21, 553 (1972).CrossRefGoogle Scholar
  25. 26.
    D. E. Zelmon, E. A. Hanning, and P. G. Schunemann, J. Opt. Soc. Am. B 18, 1307 (2001).ADSGoogle Scholar
  26. 27.
    A. Yariv, Quantum Eletronics (Wiley, New York, 1988; Sov. Radio, Moscow, 1973).Google Scholar
  27. 28.
    Y. J. Ding and I. B. Zotova, J. Nonlinear Opt. Phys. Mater. 11, 75 (2002).CrossRefADSGoogle Scholar
  28. 29.
    Y. J. Ding and W. Shi, J. Nonlinear Opt. Phys. Mater. 12, 557 (2003).CrossRefADSGoogle Scholar
  29. 30.
    W. L. Fraust and C. H. Henry, Phys. Rev. Lett. 17, 1265 (1966).ADSGoogle Scholar
  30. 31.
    T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, Appl. Phys. Lett. 83, 237 (2003).CrossRefADSGoogle Scholar
  31. 32.
    E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).Google Scholar
  32. 33.
    D. Zhang, L. A. Gordon, Y. S. Wu, et al., Opt. Lett. 23, 1010 (1998).ADSGoogle Scholar
  33. 34.
    W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, “A Novel Detection Scheme for THz Waves Based on Upconversion at Room Temperature,” in CWM5, CLEO/QELS, Baltimore, MD, 2005.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • Y. J. Ding
    • 1
  • W. Shi
    • 1
  1. 1.Department of Electrical and Computer Engineering Lehigh UniversityBethlehemUSA

Personalised recommendations