Laser Physics

, Volume 16, Issue 4, pp 556–561 | Cite as

How small a packet of photons can be made?

  • P. Saari
Modern Trends in Laser Physics

Abstract

In contradistinction not only to the seventy-year-old notion of poor localizability of a photon but also to a recent result of principal revisions of the notion, we demonstrate that N-photon pulsed wave functions of a specific type exhibit faster than an exponential falloff of energy and photodetection rate with distance from the pulse center. The wave functions are cylindrical and exhibit an exceptionally strong localization in two dimensions out of three. Our approach involves a “technology transfer” in the sense that, in order to tackle the problem belonging to quantum optics, we make use of results obtained recently in the study of the so-called nondiffracting localized solutions to the classical wave equation.

PACS numbers

03.70.+k 03.50.De 03.65.pm 11.30.Cp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau and R. Peierls, Z. Phys. 62, 188 (1930).ADSGoogle Scholar
  2. 2.
    I. Bialynicki-Birula, Prog. Opt. 36, 1 (1996).Google Scholar
  3. 3.
    A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Nauka, Moscow, 1969; Interscience, New York, 1965).Google Scholar
  4. 4.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995; Fizmatlit, Moscow, 2000).Google Scholar
  5. 5.
    M. Hawton, Phys. Rev. A 59, 3223 (1999).ADSGoogle Scholar
  6. 6.
    I. Bialynicki-Birula, Phys. Rev. Lett. 80, 5247 (1998).CrossRefADSMATHMathSciNetGoogle Scholar
  7. 7.
    O. Keller, Phys. Rev. A 62, 022111 (2000).Google Scholar
  8. 8.
    K. W. Chan, C. K. Law, and J. H. Eberly, Phys. Rev. Lett. 88, 402 (2002).CrossRefGoogle Scholar
  9. 9.
    K. Reivelt and P. Saari, http://arxiv.org/abs/physics/0309079 (2003).
  10. 10.
    P. Saari and K. Reivelt, Phys. Rev. E 69, 036612 (2004).Google Scholar
  11. 11.
    A. Erdelyi, Tables of Integral Transforms (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1954; Nauka, Moscow, 1969).Google Scholar
  12. 12.
    R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain (American Mathematical Society, New York, 1934; Nauka, Moscow, 1964).Google Scholar
  13. 13.
    P. Saari, M. Menert, and H. Valtna, Opt. Commun. 246, 445 (2005).CrossRefADSGoogle Scholar
  14. 14.
    I. Besieris, M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, Prog. Electromagn. Res. 19, 1 (1998).Google Scholar
  15. 15.
    P. Saari and K. Reivelt, Phys. Rev. Lett. 79, 4135 (1997).CrossRefADSGoogle Scholar
  16. 16.
    H. Sõnajalg, M. Rätsep, and P. Saari, Opt. Lett. 22, 310 (1997).ADSGoogle Scholar
  17. 17.
    D. Mugnai, A. Ranfagni, and R. Ruggeri, Phys. Rev. Lett. 84, 4830 (2000).CrossRefADSGoogle Scholar
  18. 18.
    I. Alexeev, K. Y. Kim, and H. M. Milchberg, Phys. Rev. Lett. 88, 073901 (2002).Google Scholar
  19. 19.
    K. Reivelt and P. Saari, Phys. Rev. E 66, 056611 (2002).Google Scholar
  20. 20.
    R. Grunwald, et al., Phys. Rev. A 67, 063 820 (2003).Google Scholar
  21. 21.
    H. Ringermacher and L. R. Mead, Phys. Rev. Lett. 87, 059402-1 (2001).Google Scholar
  22. 22.
    K. Reivelt and P. Saari, Opt. Lett. 29, 1176 (2004).CrossRefADSGoogle Scholar
  23. 23.
    A. P. Kiselev, J. Phys. A: Math. Gen. 36, L345 (2003).CrossRefADSMATHMathSciNetGoogle Scholar
  24. 24.
    C. J. R. Sheppard and S. Saghati, J. Opt. Soc. Am. A 16, 1381 (1999).ADSGoogle Scholar
  25. 25.
    P. Saari, Opt. Express 8, 590 (2001).ADSGoogle Scholar
  26. 26.
    H. Valtna, K. Reivelt, and P. Saari, J. Opt. A 8, 118 (2006).Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • P. Saari
    • 1
  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia

Personalised recommendations