Laser Physics

, Volume 16, Issue 3, pp 474–476 | Cite as

Mechanism for the void formation in the bright spot of a fiber fuse

  • S. I. Yakovlenko
Interaction of Laser Radiation with Matter

Abstract

A simple mechanism for the formation of a chain of voids (cavities) behind the spot of the laser optical discharge in an optical fiber is proposed. This mechanism is related to the motion of liquid in the opposite direction with respect to the propagation direction of the laser radiation between the isotherms that bound the charge-separation region and low-viscosity region. The motion is caused by the extrusion of the low-viscosity layer owing to the excessive pressure induced by the charge repulsion. The void shape (a bullet moving along the laser radiation) is determined by the isotherm sharpness. The bridge formation temperature (about 5000 K) is estimated based on the comparison of the extrusion velocity of the low-viscosity layer and the velocity of the bright spot.

PACS numbers

52.38.-r 42.81.Dp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kashyap and K. J. Blow, Electron. Lett. 24(1), 47 (1988).ADSGoogle Scholar
  2. 2.
    R. M. Atkins, P. G. Simpkins, and A. D. Yablon, “Track of Fiber Fuse: A Rayleigh Instability in Optical Waveguides,” Opt. Lett. 28, 974 (2003).Google Scholar
  3. 3.
    I. A. Bufetov, A. A. Frolov, E. M. Dianov, et al., “Dynamics of Fiber Fuse Propagation,” in Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, 2005 (Anaheim, 2005).Google Scholar
  4. 4.
    S. Todoroki, “Ultrahigh-Speed Videography of Fiber Fuse Propagation: A Tool for Studying Void Formation,” in Proceedings of International Conference on Coherent and Nonlinear Optics (ICONO) and Lasers, Applications, and Technologies (LAT), St. Petersburg, Russia, 2005 (St. Petersburg, 2005).Google Scholar
  5. 5.
    S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 34(8), 765 (2004) [Quantum Electron. 34, 787 (2004)].Google Scholar
  6. 6.
    E. Yurkov and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 11, 21 (2004).Google Scholar
  7. 7.
    E. Yurkov and S. I. Yakovlenko, Kratk. Soobshch. Fiz., No. 5 (2005).Google Scholar
  8. 8.
    Lord Rayleigh, Nature 95, 66 (1915).Google Scholar
  9. 9.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford Univ. Press, Oxford, 1961).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 2nd ed. (Nauka, Moscow, 1986; Pergamon Press, Oxford, 1987).Google Scholar
  11. 11.
    R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Laser Phys. 14(11), 1429 (2004).Google Scholar
  12. 12.
    R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 75(2), 94 (2005) [Tech. Phys. 50, 232 (2005)].Google Scholar
  13. 13.
    A. N. Tkachev and S. I. Yakovlenko, Kvantovaya Elektron. (Moscow) 34(8), 761 (2004) [Quantum Electron. 34, 761 (2004)].Google Scholar
  14. 14.
    D. P. Hand and P. St. J. Russel, Opt. Lett. 13(9), 767 (1988).ADSGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • S. I. Yakovlenko
    • 1
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations