Physical Mesomechanics

, Volume 22, Issue 5, pp 375–381 | Cite as

Molecular Dynamics Study of the Evolution of Rotational Atomic Displacements in a Crystal Subjected to Shear Deformation

  • A. I. DmitrievEmail author
  • A. Yu. Nikonov
  • A. E. Filippov
  • S. G. Psakhie


The paper analyzes the redistribution of atomic displacements in an initially defect-free copper crystallite after shear deformation with emphasis on the evolution of dynamic structures formed by self-consistent collective atomic rotations. The analysis is based on an original technique which allows one to identify vortex motion in a vector variable space with a discrete step. The results of research show that the direction of consistent atomic motion in vortex structures varies with time and from vortex to vortex. Such spatial alternation of rotations in the material provides its continuity along the boundaries of vortex structures, and their time-variant direction ensures stress and strain transfer from the bulk of the loaded crystal to its peripheral free boundaries. When the strain goes above its critical value, such redistribution can lead to the formation of structural defects. Thus, the vortex structures formed by elastic atomic displacements can be considered as dynamic defects because they provide a way for internal relaxation in the loaded material.


rotational motion dynamic defects shear deformation molecular dynamics strain redistribution structural defects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was supported by Fundamental Research Program of the State Academies of Sciences for 2013–2020 (project No. III.23.2.4 project). The results related to lattice defect formation due to elastic stress redistribution were obtained under Russian Science Foundation grant No. 17-19-01374. The molecular dynamics simulation was performed on a Skif Cyberia supercomputer under Competitiveness Enhancement Program of Tomsk State University.


  1. 1.
    Berger, M.A., Introduction to Magnetic Helicity, Plasma Phys. Control. Fusion. B. IOP Publ., 1999, vol. 41, no. 12, pp. 167–175.ADSCrossRefGoogle Scholar
  2. 2.
    Hasegawa, H., Fujimoto, M., Phan, T.-D., Rume, H., Balogh, A., Dunlop, M.W., Hashimoto, C., and Tandokoro, R., Transport of Solar Wind into Earth’s Magnetosphere through Rolled-up Kelvin-Helmholtz Vortices, Nature, 2004, vol. 430, no. 7001, pp. 755–758.ADSCrossRefGoogle Scholar
  3. 3.
    Sayanagi, K.M., Dyudina, U.A., Ewald, S.P., Fischer, G., Ingersoll, A.P., Kurth, W.S., Muro, G.D., Porco, C.C., and West, R.A., Dynamics of Saturn’s Great Storm of 2010–2011 from Cassini ISS and RPWS, Icarus., 2013, vol. 223, no. 1, pp. 460–478.ADSCrossRefGoogle Scholar
  4. 4.
    Filippov, A.E., Simple Model of Dust Medium Evolution, Phys. Lett. A, 1994, vol. 189, no. 5, pp. 361–366.ADSCrossRefGoogle Scholar
  5. 5.
    Kizner, Z. and Khvoles, R., Two Variations on the Theme of Lamb-Chaplygin: Supersmooth Dipole and Rotating Multipoles, Regul. Chaotic Dyn., 2004, vol. 9, no. 4, pp. 509–518.ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Proment, D., Onorato, M., and Barenghi, C.F., Vortex Knots in a Bose-Einstein Condensate, Phys. Rev. E, 2012, vol. 85, no. 3, p. 36306.ADSCrossRefGoogle Scholar
  7. 7.
    Filippov, A.E., Radievsky, A.V., and Zeltser, A.S., Kinetics of Vortex Formation in Superconductors with d-Pairing, Phys. Rev. B, 1996, vol. 54, no. 5, pp. 3504–3507.ADSCrossRefGoogle Scholar
  8. 8.
    Geim, A.K., Grigorieva, I.V., Dubonos, S.V., Lok, J.G.S., Maan, J.C., Filippov, A.E., and Peeters, F.M., Phase Transitions in Individual Sub-Micrometre Superconductors, Nature, 1997, vol. 390, no. 6657, pp. 259–262.ADSCrossRefGoogle Scholar
  9. 9.
    Leonov, A.O. and Mostovoy, M., Multiply Periodic States and Isolated Skyrmions in an Anisotropic Frustrated Magnet, Nat. Commun., 2015, no. 6, p. 8275.Google Scholar
  10. 10.
    Kiselev, N.S., Bogdanov, A.N., Schäfer, R., and Rößler, U.K., Chiral Skyrmions in Thin Magnetic Films: New Objects for Magnetic Storage Technologies? J. Phys. D. Appl. Phys., 2011, vol. 44, no. 39, p. 392001.CrossRefGoogle Scholar
  11. 11.
    Filippov, A.E., Kinetics of Vortex Structure Formation in Magnetic Materials, J. Exp. Theor. Phys., 1997, vol. 84, no. 5, pp. 971–977.ADSCrossRefGoogle Scholar
  12. 12.
    Frank, F.C., LXXXIII, Crystal Dislocations.—Elementary Concepts and Definitions, Philos. Mag., 1951, vol. 42, no. 331, pp. 809–819.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Panin, V.E. and Grinyaev, Yu.V., Physical Mesomechanics: a New Paradigm at the Interface of Solid State Physics and Solid Mechanics, Phys. Mesomech., 2003, vol. 6, no. 4, pp. 7–32.Google Scholar
  14. 14.
    Surface Layers and Internal Interfaces in Heterogeneous Materials, Panin, V.E., Ed., Novosibirsk: Izd-vo SO RAN, 2006, pp. 32–69.Google Scholar
  15. 15.
    Egorushkin, V.E. and Panin, V.E., Scale Invariance of Plastic Deformation of the Planar and Crystal Subsystems of Solids under Superplastic Conditions, Phys. Mesomech., 2017, vol. 20, no. 1, pp. 1–9. doi CrossRefGoogle Scholar
  16. 16.
    Panin, V.E., Egorushkin, V.E., Panin, A.V., and Chernyavskii, A.G., Plastic Distortion as a Fundamental Mechanism in Nonlinear Mesomechanics of Plastic Deformation and Fracture, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 255–268.CrossRefGoogle Scholar
  17. 17.
    Psakhie, S.G., Zolnikov, K.P., Dmitriev, A.I., Smolin, A.Yu., and Shilko, E.V., Dynamic Vortex Defects in Deformed Material, Phys. Mesomech., 2014, vol. 17, no. 1, pp. 15–22.CrossRefGoogle Scholar
  18. 18.
    Zhang, Z., He, G., Zhang, H., and Eckert, J., Rotation Mechanism of Shear Fracture Induced by High Plasticity in Ti-Based Nano-Structured Composites Containing Ductile Dendrites, Scripta Mater., 2005, vol. 52, no. 9, pp. 945–949.CrossRefGoogle Scholar
  19. 19.
    Ovid’ko, I.A. and Sheinerman, A.G., Special Rotational Deformation in Nanocrystalline Metals and Ceramics, Scripta Mater., 2008, vol. 59, no. 1, pp. 119–122.CrossRefGoogle Scholar
  20. 20.
    Morozov, N.F., Ovid’ko, I.A., Sheinerman, A.G., and Aifantis, E.C., Special Rotational Deformation as a Toughening Mechanism in Nanocrystalline Solids, J. Mech. Phys. Solids, 2010, vol. 58, pp. 1088–1099.ADSCrossRefGoogle Scholar
  21. 21.
    Gutkin, M.Y., Ovid’ko, I.A., and Skiba, N.V., Crossover from Grain Boundary Sliding to Rotational Deformation in Nanocrystalline Materials, Acta Mater., 2003, vol. 51, pp. 4059–4071.CrossRefGoogle Scholar
  22. 22.
    Feng, H., Fang, Q.H., Zhang, L.C., and Liu, Y.W., Special Rotational Deformation and Grain Size Effect on Fracture Toughness of Nanocrystalline Materials, Int. J. Plasticity, 2013, vol. 42, pp. 50–64.CrossRefGoogle Scholar
  23. 23.
    Ovid’ko, I.A. and Sheinerman, A.G., Nanoscale Rotational Deformation in Solids at High Stresses, Appl. Phys. Lett., 2011, vol. 98, p. 181909.ADSCrossRefGoogle Scholar
  24. 24.
    Ovid’ko, I.A. and Sheinerman, A.G., Nanoscale Rotational Deformation near Crack Tips in Nanocrystalline Solids, J. Phys. D. Appl. Phys., 2012, vol. 45, p. 335301.CrossRefGoogle Scholar
  25. 25.
    Psakhie, S.G., Shilko, E.V., Popov, M.V., and Popov, V.L., The Key Role of Elastic Vortices in the Initiation of Intersonic Shear Cracks, Phys. Rev. E, 2015, vol. 91, p. 063302.ADSCrossRefGoogle Scholar
  26. 26.
    Psakhie, S.G., Zolnikov, K.P., Dmitriev, A.I., Kryzhevich, D.S., and Nikonov, A.Yu., Local Structural Transformations in the FCC Lattice in Various Contact Interaction. Molecular Dynamics Study, Phys. Mesomech., 2012, vol. 15, no. 3–4, pp. 147–154.CrossRefGoogle Scholar
  27. 27.
    Dmitriev, A.I., Nikonov, A.Yu., Filippov, A.E., and Popov, V.L., Identification and Space-Time Evolution of Vortex-Like Motion of Atoms in a Loaded Solid, Phys. Mesomech., 2018, vol. 21, no. 5, pp. 419–429. doi CrossRefGoogle Scholar
  28. 28.
    Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, vol. 117, no. 1, pp. 1–19.ADSCrossRefGoogle Scholar
  29. 29.
    Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., and Kress, J.D., Structural Stability and Lattice Defects in Copper: Ab Initio, Tight-Binding, and Embedded-Atom Calculations, Phys. Rev. B, 2001, vol. 63, no. 22, p. 224106.ADSCrossRefGoogle Scholar
  30. 30.
    Stukowski, A., Visualization and Analysis of Atomistic Simulation Data with OVITO—the Open Visualization Tool, Model. Simul. Mater. Sci. Eng., 2010, vol. 18, no. 1, p. 15012.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Dmitriev
    • 1
    • 2
    Email author
  • A. Yu. Nikonov
    • 1
    • 2
  • A. E. Filippov
    • 3
  • S. G. Psakhie
    • 1
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.Technical University of BerlinBerlinGermany

Personalised recommendations