Advertisement

Physical Mesomechanics

, Volume 22, Issue 3, pp 188–194 | Cite as

Finite Element Simulation of Chessboard Strain Localization in View of Statistical Spreads in Polycrystal Grain Parameters

  • V. A. PolyanskiyEmail author
  • A. K. Belyaev
  • A. I. Grishchenko
  • A. M. Lobachev
  • V. S. Modestov
  • A. V. Pivkov
  • D. A. Tretyakov
  • L. V. Shtukin
  • A. S. Semenov
  • Yu. A. Yakovlev
Article
  • 17 Downloads

Abstract

The paper presents a finite element simulation for research in the so-called chessboard effect of plastic strain localization. In the simulation, we consider a polycrystal metal strip under uniform tension on the assumption of a normal yield stress distribution over its grains. Using the simplest isotropic model, it is taken that all grains have the same linear hardening coefficient. The simulation results demonstrate that whether the problem statement is two- or three-dimensional the material reveals plastic strain localization in the form of numerous intersecting bands arranged into a chessboard system on the initially flat specimen surface.

Keywords

chessboard plastic deformation finite element simulation plastic strain localization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Portevin, A., and Le Chatelier, F., Sur un Phenomene Observe Lors de L’essai de Traction d’Alliages en Cours de Transformation, Comptes Rendus de l’Académie des Sciences Paris, 1923, vol. 176, pp. 507–510.Google Scholar
  2. 2.
    Zuev, L.B., Semukhin, B.S., and Zarikovskaya, N.V., Effect of the Grain Size on the Wavelength of Localized Strain in Aluminum Specimens in Tension, J. Appl. Mech. Tech. Phys., 2002, vol. 43, no. 2, pp. 311–314.ADSCrossRefGoogle Scholar
  3. 3.
    Zuev, L.B., Danilov, V.I., and Semukhin, B.S., Space-Time Ordering in Plastic Deformation of Solids, Usp. Fiz. Met., 2002, vol., no. 3, pp. 237–304.CrossRefGoogle Scholar
  4. 4.
    Ananthakrishna, G., Current Theoretical Approaches to Collective Behavior of Dislocations, Phys. Rep., 2007, vol. 440, no. 4, pp. 113–259.ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Rizzi, E. and Hahner, P., On the Portevin-Le Chatelier Effect: Theoretical Modeling and Numerical Results, Int. J. Plasticity, 2004, vol. 20, no. 1, pp. 121–165.zbMATHCrossRefGoogle Scholar
  6. 6.
    Ovid’ko, I.A. and Skiba, N.V., Enhanced Dislocation Emission from Grain Boundaries in Nanocrystalline Materials, Scripta Mater., 2012, vol. 67, no. 1, pp. 13–16.CrossRefGoogle Scholar
  7. 7.
    Penning, P., Mathematics of the Portevin-Le Chatelier Effect, Acta Metall., 1972, vol. 20, no. 10, pp. 1169–1175.CrossRefGoogle Scholar
  8. 8.
    Lebyodkin, M., Brechet, Y., Estrin, Y., and Kubin, L., Statistical Behavior and Strain Localization Patterns in the Portevin-Le Chatelier Effect, Acta Mater., 1996, vol. 44, no. 11, pp. 4531–4541.CrossRefGoogle Scholar
  9. 9.
    McCormick, P.G., A Model for the Portevin-Le Chatelier Effect in Substitutional Alloys, Acta Metall., 1972, vol. 20, no. 3, pp. 351–354.CrossRefGoogle Scholar
  10. 10.
    Kalk, A., Nortmann, A., and Schwink, C., Dynamic Strain Aging and the Boundaries of Stable Plastic Deformation in Cu-Mn Single Crystals, Philos. Mag. A, 1995, vol. 72, no. 5, pp. 1239–1259.ADSCrossRefGoogle Scholar
  11. 11.
    Leoni, F. and Zapperi, S., Dislocation Mutual Interactions Mediated by Mobile Impurities and the Conditions for Plastic Instabilities, Phys. Rev. E, 2014, vol. 89, no. 2, pp. 022403.ADSCrossRefGoogle Scholar
  12. 12.
    Panin, V.E., Foundations of Physical Mesomechanics, Phys. Mesomech., 1998, vol. 1, no. 1, pp. 5–22.Google Scholar
  13. 13.
    Panin, V.E., Panin, A.V., and Moiseenko, D.D., Physical Mesomechanics of a Deformed Solid as a Multilevel System. II. Chessboard-Like Mesoeffect of the Interface in Heterogeneous Media in External Fields, Phys. Mesomech., 2007, vol. 10, no. 1–2, pp. 5–14.CrossRefGoogle Scholar
  14. 14.
    Moiseenko, D.D., Maksimov, P.V., and Solovyev, I.A., Stochastic Approach to the Multilevel Simulation of Disturbances on the Interfaces in a Loaded Solid, Phys. Mesomech., 2004, vol. 7, No. 1–2, p. 91–96.Google Scholar
  15. 15.
    Tarigopula, V., Hopperstad, O.S., Langseth, M., and Clausen, A.H., Elastic-Plastic Behavior of Dualphase, High-Strength Steel under Strain-Path Changes, Eur. J. Mech. A. Solids, 2008, vol. 27, pp. 764–782.ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Makarov, P.V., Physical Mesomechanics Approach in Simulation of Deformation and Fracture Processes, Phys. Mesomech., 1998, vol. 1, no. 1, p. 57–75.MathSciNetGoogle Scholar
  17. 17.
    Makarov, P.V., Romanova, V.A., and Balokhonov, R.R., Numerical Modeling of Heterogeneous Plastic Deformation with Consideration for Generation of Localized Plastic Shears at Interfaces and Free Surfaces, Phys. Mesomech., 2001, vol. 4, no. 5, p. 29–38.Google Scholar
  18. 18.
    Makarov, P.V., Smolin, I.Y., Prokopinckiy, I.P., and Stefanov Yu.P., Modeling of Development of Localized Plastic Deformation and Prefracture Stage in Meso-volumes of Heterogeneous Media, Int. J. Fract., 1999, vol. 100, pp. 121–131.CrossRefGoogle Scholar
  19. 19.
    Balokhonov, R.R., Makarov, P.V., Romanova, V.A., and Smolin, I.Yu., Simulation of Crystal Plasticity under Dynamic Loading, Comput. Mater. Sci., 1999, vol. 16, pp. 355–361.CrossRefGoogle Scholar
  20. 20.
    Romanova, V., Balokhonov, R., Makarov, P., Schmauder, S., and Soppa, E., Simulation of Elasto-Plastic Behavior of an Artificial 3D-Structure under Dynamic Loading, Comput. Mater. Sci., 2003, vol. 28, pp. 518–528.CrossRefGoogle Scholar
  21. 21.
    Balokhonov, R.R., Romanova, V.A., Schmauder, S., and Makarov, P.V., Simulation of Meso-Macro Dynamic Behavior Using Steel as an Example, Comput. Mater. Sci., 2003, vol. 28, pp. 505–511.CrossRefGoogle Scholar
  22. 22.
    Kireitseu, M., Kompis, V., Altenbach, H., Bochkareva, V., Hui D., and Eremeev, S., Continuum Mechanics Approach and Computational Modeling of Submicrocrystalline and Nanoscale Materials, Fullerenes, Nanotubes and Carbon, Nanostructures, 2005, vol. 13, no. 4, pp. 313–329. doi  https://doi.org/10.1080/15363830500237176 Google Scholar
  23. 23.
    Balokhonov, R.R., Stefanov, Yu.P., Makarov, P.V., and Smolin, I.Yu., Deformation and Fracture of Surface-Hardened Materials at Meso-and Macroscale Levels, Theor. Appl. Fract. Mech, 2000, vol. 33, pp. 9–15.CrossRefGoogle Scholar
  24. 24.
    Asaro, R.J., Micromechanics of Crystals and Polycrystals, Adv. Appl. Mech., 1983, vol. 23, pp. 1–115.CrossRefGoogle Scholar
  25. 25.
    McHugh, P.E., Asaro, R.J., and Shih, C.F., Crystal Plasticity Models, in Fundamentals of Metal Matrix Composites, S. Suresh, Ed., Boston: Butherworth-Heinman, 1993, pp. 139–157.CrossRefGoogle Scholar
  26. 26.
    Harder, J., Simulation lokaler Flieβvorgange in Polykristallen, Braunschweiger Schriften zur Mechanik, Mechanik-Zentrum, Technische Universitat Braunschweig, 1997, vol. 28.Google Scholar
  27. 27.
    Smolin, I.Y., Soppa, E., Schmauder, S., and Makarov, P.V., Two-Dimensional Simulation of Mesolevel Plastic Deformation in the Matrix of a Cermet Composite: Evaluation of the Stress States and Calculation Methods, Phys. Mesomech., 2000, vol. 3, no. 1, p. 17–22.Google Scholar
  28. 28.
    Madej, L., Hodgson, P.D., and Pietrzyk, M., Development of the Multi-Scale Analysis Model to Simulate Strain Localization Occurring during Material Processing, Arch. Comput. Meth. Eng., 2009, vol. 16, pp. 287–318.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Gaskell, J., Dunne, F., Farrugia, D., and Lin, J., A Multiscale Crystal Plasticity Analysis of Deformation in a Two-Phase Steel, J. Multiscale Model., 2009, vol. 1, no. 1, pp. 1–19.CrossRefGoogle Scholar
  30. 30.
    Clayton, J.D., Dynamic Plasticity and Fracture in High Density Polycrystals: Constitutive Modeling and Numerical Simulation, J. Mech. Phys. Solids, 2005, vol. 53, pp. 261–301.ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Clayton, J.D., Modeling Dynamic Plasticity and Spall Fracture in High Density Polycrystalline Alloys, Int. J. Solids Struct., 2005, vol. 42, pp. 4613–4640.zbMATHCrossRefGoogle Scholar
  32. 32.
    Petch, N.J., The Cleavage Strength of Polycrystals, J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.Google Scholar
  33. 33.
    Hall, E.O., Deformation and Aging of Mild Steel, Proc. Phys. Soc. B, 1951, vol. 64, no. 6, pp. 495–502.ADSCrossRefGoogle Scholar
  34. 34.
    Panin, V.E., Panin, A.V., Moiseenko, D.D., Elsukova, T.F., Kuzina, O.Yu., and Maksimov, P.V.. The Chessboard Effect in the Stress-Strain Distribution at Interfaces of a Loaded Solids, Dokl. Phys., 2006, vol. 51, no. 8, pp. 408–411.ADSCrossRefGoogle Scholar
  35. 35.
    Panin, L.E. and Panin, V.E., “Chessboard” Effect and Mass Transfer in Interfacial Media of Organic and Inorganic Nature, Phys. Mesomech., 2008, vol. 11, no. 1–2, pp. 5–18.CrossRefGoogle Scholar
  36. 36.
    Morozov, N.F., Paukshto, M.V., and Tovstik, P. E., Stability of a Surface Layer under Thermal Loading, Mech. Solids, 1998, vol. 33, no. 1, pp. 106–113.Google Scholar
  37. 37.
    Morozov, N.F. and Tovstik, P.E., On Chessboard of Buckling Modes in Compressed Materials, Acta Mech., 2012, vol. 223, no. 8, pp. 1769–1776.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Morozov, N.F. and Tovstik, P.E., Buckling Forms of a Compressed Plate on an Elastic Foundation, Dokl. Phys., 2012, vol. 57, no. 4, pp. 335–339.ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    Morozov, N.F. and Tovstik, P.E., Control of Surface Waviness, in Advanced Dynamics and Model Based Control of Structures and Machines, Irschik, H., Belyaev, A.K., Krommer, M., Eds., Wien-New York: Springer, 2011, pp. 57–64.Google Scholar
  40. 40.
    Kashtanova, S.V., Morozov, N.F., and Tovstik, P.E., Volume and Surface Stability of Uniformly Compressed Transversely Isotropic Linearly Elastic Material, Continuum Mech. Thermodyn., 2013, vol. 23, no. 5, pp. 663–673.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Lakhtin, Yu.M. and Leontieva, V.P., Materials Science, Moscow: Mashinostroenie, 1990.Google Scholar
  42. 42.
    Kudinova, N.R., Polyanskiy, V.A., Polyanskiy, A.M., and Yakovlev, Yu.A., Contribution of Surface Tension Energy during Plastic Deformation of Nanomaterials, Dokl. Phys., 2016, vol. 61, no. 10, pp. 514–516.ADSCrossRefGoogle Scholar
  43. 43.
    Chihab, K., Estrin, Y., Kubin, L.P., and Vergnol, J., The Kinetics of the Portevin-Le Chatelier Bands in an Al-5%Mg Alloy, Scripta Metall., 1987, vol. 21, no. 2, pp. 203–208.CrossRefGoogle Scholar
  44. 44.
    Franklin, S.V., Mertens, F., and Marder, M., Portevin-Le Chatelier Effect, Phys. Rev. E, 2000, vol. 62, no. 6, p. 8195.ADSCrossRefGoogle Scholar
  45. 45.
    Jiang, H., Zhang, Q., Chen, X., Chen, Z., Jiang, Z., Wu, X., and Fan, J., Three Types of Portevin-Le Chatelier Effects: Experiment and Modeling, Acta Mater., 2007, vol. 55, no. 7, pp. 2219–2228.CrossRefGoogle Scholar
  46. 46.
    Shibkov, A.A., Zolotov, A.E., Zheltov, M.A., Shuklinov, A.V., and Denisov, A.A., Dynamics of Deformation Bands and Fracture of the Aluminum-Magnesium Alloy 5556, Phys. Solid State, 2011, vol. 53, no. 10, pp. 1975–1980.ADSCrossRefGoogle Scholar
  47. 47.
    Antipina, N.A., Panin, V.E., Slosman, A.I., and Ovechkin, B.B., Switching Waves of Macroscopic Localized Deformation Bands in Tensile Ion-Nitrided Specimens, Phys. Mesomech., 2000, vol. 3, no. 3, p. 35–39.Google Scholar
  48. 48.
    Wang, X.G., Wang, L., and Huang, M.X., Kinematic and Thermal Characteristics of Luders and Portevin-Le Chatelier Bands in a Medium Mn Transformation-Induced Plasticity steel, Acta Mater., 2017, vol. 124, pp. 17–29.CrossRefGoogle Scholar
  49. 49.
    Han, J., Lua, C., Wua, B., Lia, J., Lia, H., Lua, Y., and Gaob, Q., Innovative Analysis of Luders Band Behavior in X80 Pipeline Steel, Mater. Sci. Eng. A, 2017, vol. 683, pp. 123–128.CrossRefGoogle Scholar
  50. 50.
    Zuev, L.B., Barannikova, S.A., Zarikovskaya, N.V., and Zykov, I.V., Phenomenology of Wave Processes in a Localized Plastic Flow, Phys. Solid State, 2001, vol. 43, no. 8, pp. 1483–1487.ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd 2019

Authors and Affiliations

  • V. A. Polyanskiy
    • 1
    Email author
  • A. K. Belyaev
    • 1
  • A. I. Grishchenko
    • 1
  • A. M. Lobachev
    • 1
  • V. S. Modestov
    • 1
  • A. V. Pivkov
    • 2
  • D. A. Tretyakov
    • 1
  • L. V. Shtukin
    • 1
  • A. S. Semenov
    • 1
  • Yu. A. Yakovlev
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State University of Civil AviationSt. PetersburgRussia

Personalised recommendations