Advertisement

Physical Mesomechanics

, Volume 21, Issue 6, pp 523–528 | Cite as

A Study into the Temperature and Size Effects in Nanostructures on Their Fracture under External Mechanical Loads

  • I. F. Golovnev
  • E. I. GolovnevaEmail author
  • A. V. Utkin
Article
  • 4 Downloads

Abstract

The paper presents a molecular dynamics study into the temperature and size effects in nanostructures on their mechanical characteristics and fracture. The study shows that among the cross-sectional areas studied, the least one measuring ny × nz = 5 × 5 lattice cells is boundary for perfect nanostructures, and at larger areas, these characteristics tend to those of macrostructures. dor all systems considered, a linear decrease with increasing temperature is observed in Young's modulus and in critical applied stress at which fracture occurs.

Keywords

nanostructure size effect temperature effect fracture molecular dynamics simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Regel, V.R., Slutsker, A.I., and Tomashevsky, E.E., Kinetic Nature of the Strength of Solids, Moscow: Nauka, 1974.Google Scholar
  2. 2.
    Iskandarov, A.M., Dmitriev, S.V., and Umeno, Y., Temperature Effect on Ideal Shear Strength of Al and Cu, Phys. Rev. B, 2011, vol. 84, pp. 224118(7). doi 10.1103/PhysRevB.84.224118ADSCrossRefGoogle Scholar
  3. 3.
    Tang, Ch., Guo, W., and Chen, Ch., Structural and Mechanical Properties of Partially Unzipped Carbon Nanotubes, Phys. Rev. B, 2011, vol. 83, pp. 075410(6). doi 10.1103/PhysRevB.83.075410ADSCrossRefGoogle Scholar
  4. 4.
    Zhao, H. and Aluru, N.R., Temperature and Strain–Rate Dependent Fracture Strength of Graphene, J. Appl. Phys., 2010, vol. 108, p. 064321. doi 10.1063/1.3488620ADSCrossRefGoogle Scholar
  5. 5.
    Yamamoto, A., Kun, F., and Yukawa, S., Microstructure of Damage in Thermally Activated Fracture of Lennard–Jones Systems, Phys. Rev. E, 2011, vol. 83, p. 066108. doi 10.1103/PhysRevE.83.066108ADSCrossRefGoogle Scholar
  6. 6.
    Sankaranarayanan, S.K.R.S, Bhethanabotla, V.R., and Josrph, B., Molecular Dynamics Simulation of Temperature and Strain Rate Effects on Elastic Properties of Bimetallic Pd–Pt Nanowires, Phys. Rev. B, 2007, vol. 76, pp. 134117(13). doi 10.1103/PhysRevB.76.134117ADSCrossRefGoogle Scholar
  7. 7.
    Liu, Y., Wang, F., Zhao, J., Jiang, L., Kiguchi, M., and Murakoshi, K., Theoretical Investigation on the Influence of Temperature and Crystallographic Orientation on the Breaking Behavior of Copper Nanowire, Phys. Chem. Chem. Phys., 2009, vol. 11, pp. 6514–6519. doi 10.1039/b902795eCrossRefGoogle Scholar
  8. 8.
    Wang, F., Sun, W., Gao, Y., Zhao, J., and Sun, Ch., Investigation on the Most Probable Breaking Behaviors of Cupper Nanowires with the Dependence of Temperature, Comp. Mater. Sci., 2013, vol. 67, pp. 182–187. doi 10.1016/j.commatsci.2012.07.048CrossRefGoogle Scholar
  9. 9.
    Voter, A.F., Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al, Los Alamos Unclassified Technical Report #LA–UR 93–3901, 1993.Google Scholar
  10. 10.
    Golovneva, E.I., Golovnev, I.F., and Fomin, V.M., Simulation of Quasistatic Processes in Crystals by a Molecular Dynamics Method, Phys. Mesomech., 2003, vol. 6, no. 5–6, pp. 41–45.Google Scholar
  11. 11.
    Bolesta, A.V., Golovnev, I.F., and Fomin, V.M., Contact Melting of Nickel Cluster at Collision with Rigid Wall, Phys. Mesomech., 2001, vol. 4, no. 1, pp. 5–10.Google Scholar
  12. 12.
    Schneider, T. and Stoll, E., Molecular–Dynamics Study of a Three–Dimensional One–Component Model for Distortive Phase Transitions, Phys. Rev. B, 1997, vol. 17, no. 3, pp.1302–1322.Google Scholar
  13. 13.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.d., DiNola, A., and Haak, J.R., Molecular Dynamics with Coupling to an External Bath, J. Chem. Phys., 1984, vol. 81, no. 8, pp. 3684–3690.ADSGoogle Scholar
  14. 14.
    Andersen, H.C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature, J. Chem. Phys 1980, vol. 72, pp. 2384–2393.Google Scholar
  15. 15.
    Nose, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Methods, J. Chem. Phys., 1984, vol. 81, no. 1, pp. 511–519.ADSCrossRefGoogle Scholar
  16. 16.
    Hoover, W.G., Canonical Dynamics: Equilibrium Phase–Space Distributions, Phys. Rev. A, 1985, vol. 31, no. 3, pp. 1695–1697.ADSCrossRefGoogle Scholar
  17. 17.
    Martyna, G.J., Klein, M.L., and Tuckerman, M., Nose–Hoover Chains: The Canonical Ensemble via Continuous Dynamics, J. Chem. Phys., 1992, vol. 97, no. 4, pp. 2635–2643.ADSCrossRefGoogle Scholar
  18. 18.
    Golovnev, I.F., Golovneva, E.I., and domin, V.M., The Influence of the Surface on the Fracture Process of Nanostructures under Dynamic Loads, Comp. Mater. Sci., 2015, vol. 97, pp. 109–115. doi 10.1016/j.commatsci.2014.10.022CrossRefGoogle Scholar
  19. 19.
    Golovnev, I.F., Golovneva, E.I., and domin, V.M., Molecular–Dynamics Analysis of the Rotary Field Formation in the Nanostructure during Stretching at a Constant Deformation Velocity, Comput. Mater. Sci., 2015, vol. 110, pp. 302–307. doi 10.1016/j.commatsci.2015.08.012CrossRefGoogle Scholar
  20. 20.
    Golovnev, I.F., Golovneva, E.I., and Fomin, V.M., Molecular Dynamics Study into the Role of the Surface in Fracture of Nanostructures, Phys. Mesomech., 2015, vol. 18, no. 2, pp. 127–133.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. F. Golovnev
    • 1
  • E. I. Golovneva
    • 1
    Email author
  • A. V. Utkin
    • 1
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations